
Introduction to Probability and
Statistics

2023/24

Stephen Connor

Table of contents

Overview 4

Computer labs 5
Assessment . 6

Intro Lab: Meeting R and RStudio 8
The data: Dr. Arbuthnot’s baptism records . 10
Some exploration . 12
A newer data set . 16

Lab 1: Script files and simulation 18
Working with an R script file . 18
Simulation . 21

Simulating random samples . 22
Estimating probabilities from a random sample 25
Another probability problem . 29

Lab 2: Introduction to data 34
The Behavioral Risk Factor Surveillance System . 34

Types of variables . 35
Summaries and tables . 36

Interlude: how R thinks about data . 39
A little more on subsetting . 41

Creating new variables from old . 42

Lab 3: Data and distributions 45
Numerical summaries of data . 45

Datasets . 45
Types of variables . 46
Central value of a variable . 47
Amount of variability in a variable . 49
Empirical quantiles, quartiles, and IQR . 51

2

The data . 53
Data and probability distributions . 56

The normal distribution . 57
Skewness . 59
Using Q-Q plots . 61
Normal probabilities . 63

Lab 4: Sampling distributions 65
Independent and identically distributed (i.i.d.) samples 65
Estimating the expectation . 66

Sampling distribution of the sample mean . 67
Interlude: the for loop . 68
Sample size and the sampling distribution . 70

Estimating the variance . 73
Real-estate data . 73

Taking a sample . 74
Sampling distribution . 75
Effect of the size of the sample . 77

You only have one sample . 78

Lab 5: Smarties 79
Smarties and probability . 79

Waiting for a blue . 79
Collecting a full set . 81

Smarties and statistics . 83
The data . 84
Estimating probabilities . 85
Not all colours are equal . 86
Sampling distributions . 87
Correlations . 88
Confidence intervals . 89

Written assignments 93

3

Overview

Welcome to IPS!

This web site is used to provide some of the course materials, and should be used alongside
the module’s Moodle page. All of the written assignment submission points can be found on
Moodle, along with the quizzes for completion as you work through the computer labs.

You only need to use this site to access the computer lab material. However, you will also be
able to access copies of the written assignments here in html format, in case you find that
more accessible than the pdf files which will be available on Moodle.

INFO Note

You can access the pdf version of any page of this site by clicking on the pdf icon in the
left-hand menu. You can also choose to view the page in dark mode, if that’s more
comfortable.

4

https://maths.york.ac.uk/moodle/course/view.php?id=2605

Computer labs

5

The goal of these labs is to introduce you to, and build up your proficiency with, R and
RStudio. You’ll be using these throughout the course, both to learn the statistical concepts
discussed in the lectures and also to analyze real data and come to informed conclusions. To
straighten out which is which:

• R is the name of the programming language itself;
• RStudio is a convenient interface.

The R language is the standard statistical tool used by most statisticians at universities. One
reason data scientists and statisticians like to use R is that all known statistical techniques are
available in R. Whenever someone develops a new statistical technique, one of the first things
they do is produce an R package so that the technique becomes available in R. The reason
they do this for R rather than for one of the commercial alternatives is that R is open source
and freely available to all, and of course that the previous methods on which the new method
builds are already available in R.

Feeling comfortable using R is not only important for this module and any further statistics
modules you may take at the Department of Mathematics of the University of York, it can
also be an important factor for your future career (see the article “R skills attract the highest
salaries”. Even though R is specially designed for statistics, it is consistently in the list of the
top ten most important programming languages compiled by the IEEE spectrum magazine.

As the labs progress, you are encouraged to explore beyond what the labs dictate; a willing-
ness to experiment will make you a much better programmer.

Assessment

Exclamation Important

The five main labs (imaginatively named “Lab 1” to “Lab 5”) count for credit: your
best 4 out of 5 will marks will count for 20% of the module mark.

Each lab will have an accompanying Moodle quiz. As you work through each lab you will
find places where you are asked to perform a calculation and then enter your mark in the
appropriate quiz.

Exclamation-Triangle Warning

The online quizzes will give you immediate feedback and allow you to try again if you
get an answer wrong. However there will be a 20% deduction for each wrong

6

http://blog.revolutionanalytics.com/2014/02/r-salary-surveys.html
http://blog.revolutionanalytics.com/2014/02/r-salary-surveys.html
https://spectrum.ieee.org/top-programming-languages-2022
https://spectrum.ieee.org/top-programming-languages-2022

attempt at a part of a question.

The Intro lab does not count for credit, but you should attempt this in the first week of the
semester to make sure that:

• you can successfully access R
• you know how to enter answers in the accompanying Moodle quiz.

Schedule

(Each link will only work once the relevant lab has been released.)

Lab Hand-out date Quiz due date (10am)

Intro Lab (not for assessment) Tuesday 26 Sep (Week
1)

—

Lab 1 Thursday 5 Oct (Week
2)

Monday 9 Oct (Week
3)

Lab 2 Thursday 19 Oct
(Week 4)

Monday 23 Nov
(Week 5)

Lab 3 Thursday 9 Nov (Week
6)

Monday 13 Nov
(Week 7)

Lab 4 Thursday 23 Nov
(Week 8)

Monday 27 Nov
(Week 9)

Lab 5 Thursday 7 Dec (Week
10)

Monday 11 Dec
(Week 11)

7

Intro Lab: Meeting R and RStudio

INFO This tutorial is adapted from OpenIntro and is released under a Creative Commons
Attribution-ShareAlike 3.0 Unported license. This lab was adapted for OpenIntro by
Andrew Bray and Mine Çetinkaya-Rundel from a lab written by Mark Hansen of
UCLA Statistics; it was extended for the University of York by Gustav Delius, and
subsequently by Stephen Connor.

In this introduction we begin with the fundamental building blocks of R and RStudio: the
interface, reading in data, and basic commands.

The first step is to open RStudio.

• If you are on a campus PC, RStudio is already installed and you can open it from the
Windows Start menu. Just start typing ‘RStudio’ into the search box on the start menu
and then click on RStudio when it shows up. (If you get a popup asking you whether
you want to upgrade to a newer version of RStudio, simply click the “Ignore update”
button.)

• If you would like to work on your own computer, you can download and install R from
here and then download and install RStudio from here. Both are free and open-source
and available for Windows, Mac and Linux.

Once you’ve opened RStudio, you should see a window similar to that depicted below.

A good way to work through these labs is is to have this file open on one half of your screen
and RStudio on the other half. On a PC you can usually move a window to the left or right
half of the screen by holding down the Windows key and pressing the left or right arrow
key.

INFO Note

You will see instructions to Complete quiz questions as you work thorugh this lab:
remember that you should enter your answers in the Quiz for Intro Lab on Moodle.

8

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://cran.rstudio.com/
https://posit.co/download/rstudio-desktop/
https://maths.york.ac.uk/moodle/course/view.php?id=2605

The panel in the upper right of the RStudio window contains your Environment as well as a
History of the commands that you’ve previously entered. The lower right panel has several
tabs, including Plots where any plots that you generate will show up.

The panel on the left is where the action happens. It’s called the Console. Every time you
launch RStudio, it will have text at the top of the console giving lots of information that you
can mostly ignore, including the version of R that you’re running. Below that information is
the prompt. As its name suggests, this prompt is really a request, a request for a command.
Initially, interacting with R is all about typing commands and interpreting the output. These
commands and their syntax have evolved over decades (literally) and now provide what many
users feel is a fairly natural way to access data and organize, describe, and invoke statistical
computations.

To get you started, enter the following command at the R prompt (i.e. right after > on the
console). You can either type it in manually or copy and paste it from this document.

LIGHTBULB Tip

If you’re using the html version of this document, then to copy the code you can simply
hover your mouse over the box below: you should see a ‘Copy to clipboard’ symbol
appear in the top right corner of the box – click on this, and then paste what you’ve
copied into RStudio.

9

source("http://www.openintro.org/stat/data/arbuthnot.R")

This command instructs R to access the OpenIntro website and fetch some data: the Arbuth-
not baptism counts for boys and girls. You should see that the environment area in the upper
right hand corner of the RStudio window now lists a data set called arbuthnot that has 82
observations on 3 variables.

As you interact with R, you will create a series of objects. Sometimes you load them as we
have done here, and sometimes you create them yourself as the by-product of a computation
or some analysis you have performed.

Note that because it is accessing data on the web, the above command will work in a com-
puter lab, in the library, or at home; just as long as you have access to the internet.

The data: Dr. Arbuthnot’s baptism records

The Arbuthnot data set was compiled by Dr. John Arbuthnot, an 18th century physician,
writer, and mathematician. He was interested in the ratio of newborn boys to newborn girls,
so he gathered the baptism records for children born in London for every year from 1629 to
1710. We can take a look at the data by typing its name into the console and hitting Enter.

arbuthnot

What you should see are four columns of numbers, each row representing a different year: the
first entry in each row is simply the row number (an index we can use to access the data from
individual years if we want), the second is the year, and the third and fourth are the numbers
of boys and girls baptised that year, respectively. Use the scroll bar on the right side of the
console window to examine the complete data set.

LIGHTBULB Tip

A nice feature of RStudio is that it comes with a built-in data viewer. Click on the name
arbuthnot in the upper right window that lists the objects in your environment. This
will bring up an alternative display of the Arbuthnot counts in the upper left panel of the
RStudio window.

Moving back to the console, if we only want to see the first few lines of the data set, we can
type

10

head(arbuthnot)
#> year boys girls
#> 1 1629 5218 4683
#> 2 1630 4858 4457
#> 3 1631 4422 4102
#> 4 1632 4994 4590
#> 5 1633 5158 4839
#> 6 1634 5035 4820

Sometimes, as in this example, I’ll show you the output of the commands when I run them
on my computer, so that you can compare with what you get when you run the commands
yourself: any line starting with #> corresponds to code output.

LIGHTBULB Tip

In the html version of this document, the word head() in the code block above is under-
lined (as is the command source() further up the page). Clicking on an R command
which is underlined will take you to its online documentation, where you can read more
about how to use it.

Note that the row numbers in the first column are not part of Arbuthnot’s data. R adds them
as part of its printout to help you make visual comparisons. You can think of them as the
index that you see on the left side of a spreadsheet. In fact, the comparison to a spreadsheet
will generally be helpful. R has stored Arbuthnot’s data in a kind of spreadsheet or table
called a data frame.

You can see the dimensions of this data frame by typing:

dim(arbuthnot)
#> [1] 82 3

This indicates that there are 82 rows and 3 columns (we’ll get to what the [1] means in a bit),
just as it says next to the object in your Environment tab. You can see the names of these
columns (or variables) by typing:

names(arbuthnot)
#> [1] "year" "boys" "girls"

You should see that the data frame contains the columns year, boys, and girls. By this
point, you might have noticed that many of the commands in R look a lot like functions; that
is, invoking R commands means supplying a function with some number of arguments. The

11

dim() and names() commands, for example, each took a single argument, the name of a
data frame.

Some exploration

Let’s start to examine the data a little more closely. We can access the data in a single column
of a data frame separately using a command like

arbuthnot$boys

This command will only show the number of boys baptised each year.

Your turn

What command would you use to extract just the counts of girls baptised each year? Try
it!
Now answer quiz question 1.

Notice that the way R has printed these data is different. When we looked at the complete
data frame, we saw 82 rows, one on each line of the display. These data are no longer struc-
tured in a table with other variables, so they are displayed one right after another.

Objects that print out in this way are called vectors; they represent a set of numbers. R has
added numbers in [brackets] along the left side of the printout to indicate locations within
the vector. For example, 5218 follows [1], indicating that 5218 is the first entry in the vector.
And if [43] starts a line, then that would mean the first number on that line would represent
the 43rd entry in the vector.

R has some powerful functions for making graphics. We can create a simple plot of the
number of girls baptised per year with the command

plot(x = arbuthnot$year, y = arbuthnot$girls)

12

1640 1660 1680 1700

30
00

50
00

70
00

arbuthnot$year

ar
bu

th
no

t$
gi

rls

By default, R creates a scatterplot with each (x,y) pair indicated by an open circle. The plot
itself should appear under the Plots tab of the lower right panel of RStudio.

Notice that the command above again looks like a function, this time with two arguments
separated by a comma. The first argument in the plot function specifies the variable for the
x-axis and the second for the y-axis. If we wanted to connect the data points with lines, we
could add a third argument, the letter l for line.

plot(x = arbuthnot$year, y = arbuthnot$girls, type = "l")

1640 1660 1680 1700

30
00

50
00

70
00

arbuthnot$year

ar
bu

th
no

t$
gi

rls

You might wonder how you are supposed to know that it was possible to add that third
argument. Thankfully, R documents all of its functions extensively: you’ve already seen that
clicking on any of the underlined commands in this page takes you to the relevant entry in

13

the documentation. Another way to read what a function does, and learn the arguments that
are available to you, is to just type in a question mark followed by the name of the function
that you’re interested in. Try the following.

?plot

Can you figure out how to produce a plot that shows both the points and the lines connecting
them?

Notice that the help file replaces the plot in the lower right panel. You can toggle between
plots and help files using the tabs at the top of that panel.

Your turn

Is there an apparent trend in the number of girls baptised over the years?
Answer quiz question 2.
Can you also guess, just by looking at the graph, when the English civil war started?

Now, suppose we want to plot the total number of baptisms. To compute this, we could use
the fact that R is really just a big calculator. We can type in mathematical expressions like

5218 + 4683

to see the total number of baptisms in 1629. We could repeat this once for each year, but there
is a faster way. If we add the vector for baptisms for boys and girls, R will compute all sums
simultaneously.

arbuthnot$boys + arbuthnot$girls

What you will see are 82 numbers (in that packed display, because we aren’t looking at a
data frame here), each one representing the sum we’re after. Take a look at a few of them and
verify that they are right.

We can now make a plot of the total number of baptisms per year with the command

plot(arbuthnot$year, arbuthnot$boys + arbuthnot$girls, type = "l")

This time, note that we left out the names of the first two arguments. We can do this because
the help file shows that the default for plot is for the first argument to be the x-variable and
the second argument to be the y-variable.

14

Next we calculate the proportion of the baptised children that are boys. We can do this for
the year 1629 with the command

5218 / (5218 + 4683)

but this may also be computed for all years simultaneously:

arbuthnot$boys / (arbuthnot$boys + arbuthnot$girls)

Note that with R, as with your calculator, you need to be conscious of the order of operations.
Here, we want to divide the number of boys by the total number of newborns, so we have
to use parentheses. Without them, R will first do the division, then the addition, giving you
something that is not a proportion.

Your turn

Now, make a plot of the proportion of boys over time. The command for making the plot
will be similar to the plot command you used earlier, just with a different expression for
the y argument.
Now answer quiz question 3.

LIGHTBULB Tip

If you use the up and down arrow keys, you can scroll through your previous commands,
your so-called command history. You can also access it by clicking on the History tab in
the upper right panel. This will save you a lot of typing in the future.

In addition to simple mathematical operators like subtraction and division, you can ask R to
make comparisons like greater than, >, less than, <, and equality, == (note that it has to be a
double equal sign, not a single equal sign). For example, we can ask if boys outnumber girls in
each year with the expression

arbuthnot$boys > arbuthnot$girls

This command returns 82 values of either TRUE if that year had more boys than girls, or
FALSE if that year did not (the answer may surprise you). This output shows a different
kind of data than we have considered so far. In the arbuthnot data frame our values are
numerical (the year, the number of boys and girls). Here, we’ve asked R to create logical data,
data where the values are either TRUE or FALSE. In general, data analysis will involve many
different kinds of data types, and one reason for using R is that it is able to represent and
compute with many of them.

15

You can count the number of entries for which the condition is TRUE by just summing the
entries in the vector

sum(arbuthnot$boys > arbuthnot$girls)

The reason this works is that R automatically converts TRUE to 1 and FALSE to 0 when asked
to do a numerical calculation with these values.

Your turn

Above you have seen how to calculate the proportion of newborns that are boys.
You have also learned how to count the number of entries in the data that satisfy a
particular condition.
Now combine those two to answer quiz question 4.

A newer data set

In the previous few pages, you recreated some of the displays and preliminary analysis of
Arbuthnot’s baptism data. To practise your new skills, you will now repeat these steps, but
for present day birth records in the United States. Load up the present day data with the
following command.

source("http://www.openintro.org/stat/data/present.R")

The data are stored in a data frame called present.

Your turn

1. What years are included in this data set? What are the dimensions of the data
frame and what are the variable or column names?

2. How do these counts compare to Arbuthnot’s? Are they on a similar scale?

3. Does Arbuthnot’s observation about boys being born in greater proportion than
girls hold up in the U.S.?

4. Make a plot that displays the boy-to-girl ratio for every year in the data set.
What do you see?

5. What was the largest total number of births in a single year in the U.S. during the

16

period covered by the dataset? You can refer to the help files or the R reference
card to find helpful commands.

Now answer questions 5 and 6 in the quiz.

These data come from a report by the Centers for Disease Control. Check it out if you would
like to read more about an analysis of sex ratios at birth in the United States.

To exit RStudio you can click the cross in the upper right corner of the whole window. You
will be prompted to save your workspace. If you click save, RStudio will save the history
of your commands and all the objects in your workspace so that the next time you launch
RStudio, you will see arbuthnot and you will have access to the commands you typed in
your previous session.

17

http://cran.r-project.org/doc/contrib/Short-refcard.pdf
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://www.cdc.gov/nchs/data/nvsr/nvsr53/nvsr53_20.pdf

Lab 1: Script files and simulation

INFO This tutorial was created by Gustav Delius for the University of York and is released
under a Creative Commons Attribution-ShareAlike 3.0 Unported license; it was
subsequently extended by Stephen Connor.

This lab has three goals:

1. to show you how to use R to do longer calculations using R script files;

2. to give you practice with using variables in R code;

3. to illustrate how we can use R to simulate random samples, and use these to empiri-
cally solve probability problems.

Especially the use of variables can be confusing, because, as the name “variable” indicates, the
value of a variable can change over time.

I assume that you have already worked carefully through the previous lab so that you know
how to open RStudio and execute some R commands. Again I would recommend that while
working through this lab you keep this pdf file open on one half of your screen and RStudio
on the other half. So now go ahead and open RStudio.

Working with an R script file

In the previous lab you worked directly in the console. For this lab you will be working in
an R script file. An R script file is simply a text file that contains the commands that you
want R to execute. The advantage of typing the R commands into the script file and executing
them from there rather than typing them straight into the console is that in the script file you
can lay out your calculations in an understandable way and you can revisit your calculations
easily later to build on them or to share them with others.

The first step is to create a new R script file. To do that you click on the left-most icon on the
toolbar at the top of the RStudio window, the one that looks like a piece of paper with a plus
sign . That opens a drop-down menu. The top entry is R script and is the one you want to

18

http://creativecommons.org/licenses/by-sa/3.0/

select. This will open an editor panel above your console with a new empty text file. That is
where you will type in the R commands for this lab.

For a first example of using a script file, let’s use R to simulate the experiment of drawing a
ball at random from a bag containing 4 red, 6 green and 3 blue balls. (We’ll look further into
the idea of simulation later on in this lab; for now, just follow the instructions to get familiar
with using a script file.)

• We can use the rep() function to create a vector with repeated entries. For example
rep("red", 4).

• We can use the c() function to concatenate several vectors.
• We can use the sample() function to choose a random element from a vector.

Let’s combine these commands to create our bag; we will store this in a variable, that we
choose to call bag, so that we can use it in what follows. We can also sample from the bag,
and save the outcome in the variable x. Copy the following code into your script file:

Code to simulate the experiment of drawing balls at random
from a bag containing 4 red, 6 green and 3 blue balls.

First create the variable 'bag', which lists all ball colours:
bag <- c(rep("red", 4), rep("green", 6), rep("blue", 3))

Draw a ball at random from bag, and assign this to variable
'x':

x <- sample(bag, size = 1)

LIGHTBULB Tip

Save the R script file frequently by clicking on the floppy disk icon on the toolbar.
The first time you save the document you will be prompted to choose a file name and
location:

• use an informative file name: don’t just name it after yourself – you’ll be creating
lots of script files during this module, and in your future studies! A good name for
this script might be IPS_lab1.R, or similar. (Note that R script files always have
file extension .R.)

• if you are on a campus PC and save the document to your H: drive then you will
be able to access it from any other campus PC or even from your home PC. For
details see this IT Services page.

19

http://www.york.ac.uk/it-services/it/filestore/

Now let’s look at the code that you’ve just pasted into your script file. There are a few impor-
tant things to notice here.

1. Notice the <- syntax for assigning a value to a variable. We will make a lot of use of
that in the future. Many other programming languages use the syntax =.

2. Everything after a hash symbol # is ignored by R, so the hash symbol is used to start
comments that explain your R code. Commenting your code is a VERY good
idea. When you come back to look at your code again later you will be very glad that
you left comments documenting what you were thinking when you originally wrote the
code.

3. You probably also noticed the way I used extra spaces to align the code across the lines.
Those spaces have no function, other than making the code more readable.

So far you have only put the code into your R script file – R has not yet evaluated the code.
For that you should click somewhere in the first line of your code and then click the Run icon
on the tool bar or, alternatively, hold down the Ctrl key and hit Enter. Either method will
send that line of code to the R console and run it. (Notice that R skips the first few lines of
comments, and only evaluates the line beginning bag.) It will also move the cursor to the next
line, so that you can then execute the second line by again clicking Run or pressing Ctrl-Enter.
Each time you send one of the commands to the console you should see a new variable appear
in the Environment panel.

LIGHTBULB Tip

Instead of sending one line of code to the console at a time, you can also highlight
multiple lines in the editor and hit Run just once.

Now let’s suppose that we actually wanted to draw not one, but 100 balls from the bag
(replacing the ball that we’ve withdrawn each time). We can just go back to our script and
edit the final line (and its comment!) as follows:

Draw 100 balls at random from bag, and assign this to variable
'x':

x <- sample(bag, size = 100, replace = TRUE)

Suppose that we want to calculate the frequencies with which we see each colour. Here’s one
possibility for calculating the proportion of red balls:

Calculate proportion of red balls in x:
red_prop <- sum(x == "red") / 100

20

Your turn

Add lines to your script file to calculate the proportions of blue and green balls in your
vector x.

A more direct route is to use R’s built-in function table(). This calculates counts of each
distinct element in x; we can then divide by the number of draws to obtain the proportions.

Calculate counts of each colour in x:
x_counts <- table(x)
Now turn these into proportions:
x_props <- x_counts / length(x)
x_props

Note that I’ve used length(x) to calculate the number of elements in x: here we know
that’s 100, but writing it this way means that if I want to go back and change the number
of samples, I don’t have to remember to also change that number when calculating the
proportions.

INFO Note

You can download my R script file for all of the above here, and compare it to yours.

Your turn

Now add five additional yellow balls to the bag you used so far. Then record the out-
come of 100,000 repetitions of the experiment of drawing a ball from that bag. Calculate
the proportion of those 100,000 draws that gave a yellow ball.
Answer quiz question 1.

Simulation

We all have the intuitive idea that if we make many independent repetitions of a probabil-
ity experiment, then the long run frequencies of events will be similar to their probabilities.
This is indeed true, and we will investigate this formally in the lectures later when we prove
the Law of large numbers. This means that one way to perform some of the more com-
plicated probability calculations would be to just re-run the experiment many times to
determine the frequencies of events.

Making many independent repetitions of a probability experiment is tedious. It takes a

21

IPS_lab1-Stephen.R

long time to throw a die 100,000 times. So we will instead ask the computer to simulate the
experiments, as we did above with the simple example of drawing balls from a bag.

In this document I am not only showing R commands that I want you to use, but I also
show the output of those commands, preceded by #>, as well as the figures produced by
plots. I nevertheless strongly recommend that you also evaluate the commands yourself and
reproduce those outputs.

Simulating random samples

The first question we need to address is how to generate random numbers; this is a difficult
problem, but one that has been extensively studied.

One way to generate random numbers would be to have an actual physical device in the
computer that performs repeated measurements of some physical quantity whose distribution
is well known. For example it is known that the arrival times of radioactive particles measured
in a Geiger counter is exponentially distributed. (We’ll meet the exponential distribution later
in this course.)

An alternative and more convenient way to generate random numbers is to use a computer
algorithm to produce a sequence of numbers that, while not truly random, is practically
indistinguishable from a sequence of random numbers. They are not truly random numbers
because if the same algorithm is run again with the same initial condition, it will produce
the same sequence again. This initial condition is called the seed for the random number
generator.

Most computer languages have good random number generators built in. This is of course
particularly true for R. In fact, it has a whole range of different algorithms for generating
random numbers. By default it uses the Mersenne-Twister algorithm.

There are functions in R to create samples from all of the common discrete and continuous
probability distributions that we’ll meet later on in this module, and it is also possible to
specify your own distribution and sample from that. We will see examples of that later in this
lab.

First we want to simulate a die. So we want to draw from the sample space {1, 2, 3, 4, 5, 6}
with equal probability. A quick way to generate the set of integers {𝑚, 𝑚+1, 𝑚+2,… , 𝑛−1, 𝑛}
in R is to use the command m:n. So with 𝑚 = 1 and 𝑛 = 6 we can obtain our sample space by
typing

1:6
#> [1] 1 2 3 4 5 6

22

https://en.wikipedia.org/wiki/Mersenne_Twister

INFO Note

We could also have used the very useful function seq() to do this job for us. Take a
look at its documentation to see some examples of how it can be used.

Now that we have our sample space, we can use the sample function, as we saw above. The
following produces a sample of size 30:

sample(1:6, 30, replace = TRUE)
#> [1] 1 2 5 5 5 2 6 4 5 4 3 3 4 3 4 1 4 6 6 1 4 2 3 3 4 1 6 2 3

4

Go ahead and put this command into a new R script file and send the command to the
console repeatedly. A different random sample is produced each time.

LIGHTBULB Tip

A convenient way to send a chunk of code to the console repeatedly is to use the Re-run
previous code section button, right next to the Run button.

Now try

set.seed(42)
sample(1:6, 30, replace = TRUE)
#> [1] 1 5 1 1 2 4 2 2 1 4 1 5 6 4 2 2 3 1 1 3 4 5 5 5 4 2 4 3 2

1

and notice that each time you reset the seed to 42 you get the same sequence of pseudo
random numbers. Try changing the seed to a different number and see that that produces a
different sample. If you want to repeat the same sample, you have to set the seed to the same
value right before creating the sample, because each time you generate a random number the
seed changes.

Whenever a lab introduces a new function, like sample() above, I recommend that you take
a look at the help page for that function. To find the help for the function, you can

• type the function name into the console or the script file editor and then hit the F1 key;
• or click on the function, if it appears in R code in one of these labs and is underlined.

Doing the first of these will open the help page in the Help tab in the frame on the lower
right of the RStudio window; the second will take you to the online documentation page. The
help page first gives a brief description of the function, then sample usage, then explains the

23

arguments that the function can take, then provides more detailed explanations and finally, at
the bottom, provides examples. I usually do not read all the details, but I have a look at the
list of arguments and at some of the examples.

I strongly recommend that, in order to get a feel for the new function you just learned about,
you start playing with it a bit by using it with different arguments. So for example you might
try

sample(c("H","T"), 10, replace = TRUE)
#> [1] "T" "T" "T" "H" "H" "T" "T" "T" "T" "T"

to create a sample of 10 coin flips. Or

sample(c("red","red", "red", "blue","blue"), 2, replace = FALSE)
#> [1] "red" "red"

to draw two balls at random (without replacement) out of a bag containing three red and two
blue balls. Experimentation is the best way to get friendly with the computer.

Your turn

Answer quiz question 2.

The following code sets the seed, sets the sample size to 30, creates a random sample, assigns
it to the variable x, tables the frequency of each value, and then makes a barplot of the
result.

set.seed(1)
n <- 30
x <- sample(1:6, n, replace = TRUE)
barplot(table(x))

24

1 2 3 4 5 6

0
1

2
3

4
5

6
7

INFO Note

As always, you should be adding each line of code to your script file, so that you can
easily re-run it later if necessary. Add your own comments to remind you what each
chunk of code does!

Estimating probabilities from a random sample

Next let’s estimate probabilities of various events by counting how frequently they occur in
the sample.

Let’s start by calculating the probability of the event that the die shows a number less or
equal to 3. So our sample space is Ω = {1, 2, 3, 4, 5, 6}, and our event of interest is 𝐸 =
{1, 2, 3}: we want to estimate ℙ (𝐸). We will use a trick that you met already in the first lab
when you counted how many years had more newborn boys than girls. We create a vector of
0s and 1s in which a 1 in a particular place indicates that the event has taken place in that
particular repetition of the experiment:

y <- as.numeric(x <= 3); y
#> [1] 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 1

0

Then we calculate the proportion of repetitions for which the event has taken place by sum-
ming over all entries in the vector (hence counting the 1s) and then dividing by the size of the
sample:

25

sum(y)/n
#> [1] 0.5333333

This gives the best approximation to the probability ℙ (𝐸) that we can obtain from this
sample. It is close to but not exactly equal to the theoretical value of 0.5.

Your turn

Answer quiz question 3.

We can make a plot that shows how the approximation to the probability behaves as the
sample size grows:

yn <- cumsum(y)/(1:n)
plot(yn, type = "b", ylim = c(0,1),

xlab = "Sample size", ylab = "Proportion less than or equal
to 3")

abline(h = 1/2, lty = "dotted")

0 5 10 15 20 25 30

0.
0

0.
4

0.
8

Sample size

P
ro

po
rt

io
n

le
ss

 th
an

 o
r

eq
ua

l t
o

3

This shows that while the values in the random sample keep fluctuating, the estimate of the
probability settles down towards its true value as the sample size increases.

The first line of the code above produces a vector of values whose ith entry is the proportion
of 1s in the first i values in the vector y. It then assigns this vector of proportions to the
variable yn. You do not have to understand the command in detail, unless you want to.

26

The second line produces the plot of the values, where we have asked R to show both the
points and the straight lines joining them, and to limit the range of the y-axis to the interval
(0,1). We’ve also added more informative labels to the axes.

Finally, the last line abline(h = 1/2, lty = "dotted") draws a dotted horizontal line
at the height 0.5 to indicate the theoretical answer to ℙ (𝐸).

Now play around by producing similar plots for larger sample size.

We can similarly calculate the probability that the die shows a six with

y <- as.numeric(x == 6); y
#> [1] 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0

0
sum(y)/n
#> [1] 0.1666667

The correct value of course is 1/6 ≈ 0.167. We see that the sample is really too small to give a
reliable estimate of the probability of obtaining a six. So we redo this with a larger sample of
size 1,000:

n <- 1000
set.seed(1)
x <- sample(1:6, n, replace=TRUE)
y <- as.numeric(x == 6)
sum(y)/n
#> [1] 0.164

The following code performs the calculation of the estimated probability for all values from 1
to 6 and plots them in a bar plot.

barplot(table(x)/n, ylab = "Estimated probability")

27

1 2 3 4 5 6

E
st

im
at

ed
 p

ro
ba

bi
lit

y

0.
00

0.
05

0.
10

0.
15

Better, but still not a very good approximation to the theoretical answer. This illustrates that
one needs very large sample sizes to get reliable results. Repeat this with larger samples to see
how the estimates improve.

Your turn

Set the seed to 12. Produce a sample of size 1,000,000 for the experiment of rolling a fair
6-sided die. What proportion of rolls give the outcome 6?
Answer quiz question 4.

We can also use our sample to approximate the probability of more complicated events. For
example, suppose that we wish to consider the event that the outcome of a fair die roll is a 2
or a 3. That is, we want to estimate ℙ ({2, 3}). We can do this by counting the numbers of 2s
and 3s in our sample

sum(x == 2 | x ==3)
#> [1] 316

Note that we’ve used the symbol | to mean or. So sum(x == 2 | x ==3) counts how
many entries in x are equal to 2 or equal to 3. Similarly, we can use the symbol != to mean
not equal, and the symbol & to mean and. So

sum(x > 1 & x < 4)
#> [1] 316

is another way of counting the number of 2s and 3s, while

28

sum(x != 5)
#> [1] 824

counts the number of outcomes in x that are not equal to 5.

Your turn

Use the same sample that you generated for Question 4 (the sample of size 1,000,000)
to approximate the probability that a fair die roll gives an outcome that is an integer
multiple of 3.
Now answer quiz question 5.

Another probability problem

Simulation provides a lazy way of “solving” probability problems. Take for example the
following problem.

A shop receives a batch of 1,000 cheap lamps. The chance that any given lamp is
defective is 0.1%. What is the probability that there are more than two defective
lamps in the batch?

We can easily simulate a batch of 1,000 cheap lamps. Let us represent a defective lamp by 1
and a working lamp by 0.

set.seed(0)
lamps <- sample(c(0, 1), 1000, replace = TRUE, prob = c(0.999,

0.001))
lamps
#> [1] 0

0 0 0 0 0 0 0 0 0
#> [38] 0

0 0 0 0 0 0 0 0 0
#> [75] 0

0 0 0 0 0 0 0 0 0
#> [112] 0

0 0 0 0 0 0 0 0 0
#> [149] 0

0 0 0 0 0 0 0 0 0

29

#> [186] 0
0 0 0 0 0 0 0 0 0

#> [223] 0
0 0 0 0 0 0 0 0 0

#> [260] 0
0 0 0 0 0 0 0 0 0

#> [297] 0
0 0 0 0 0 0 0 0 0

#> [334] 0
0 0 0 0 0 0 0 0 0

#> [371] 0
0 0 0 0 0 0 0 0 0

#> [408] 0
0 0 0 0 0 0 0 0 0

#> [445] 0
0 0 0 0 0 0 0 0 0

#> [482] 0
0 0 0 0 0 0 0 0 0

#> [519] 0
0 0 0 0 0 0 0 0 0

#> [556] 0
0 0 0 0 0 0 0 0 0

#> [593] 0
0 0 0 0 0 0 0 0 0

#> [630] 0
0 0 0 0 0 0 0 0 0

#> [667] 0
0 0 0 0 0 0 0 0 0

#> [704] 0
0 0 0 0 0 0 0 0 0

#> [741] 0
0 0 0 0 0 0 0 0 0

#> [778] 0 0 0 1 0
0 0 0 0 0 0 0 0 0

#> [815] 0
0 0 0 0 0 0 0 0 0

#> [852] 0
0 0 0 0 0 0 0 0 0

30

#> [889] 0
0 0 0 0 0 0 0 0 0

#> [926] 0
0 0 0 0 0 0 0 0 0

#> [963] 0 1
0 0 0 0 0 0 0 0 0

#> [1000] 0

We can then count how many defective lamps are in that batch.

sum(lamps)
#> [1] 2

There were 2 defective lamps in that sample. Now, without resetting the seed, we take an-
other sample to represent another random batch of lamps and again count the defective
lamps.

lamps <- sample(c(0, 1), 1000, replace = TRUE, prob = c(0.999,
0.001))

sum(lamps)
#> [1] 0

0 in this batch. Let’s try another

sum(sample(c(0, 1), 1000, replace = TRUE, prob = c(0.999, 0.001)))
#> [1] 1

The replicate() function allows us to repeat this a chosen number of times and collect the
results into a vector.

set.seed(0)
replicate(20, sum(sample(c(0,1), 1000, replace = TRUE, prob =

c(0.999, 0.001))))
#> [1] 2 0 1 1 0 0 0 1 0 0 0 0 1 2 0 1 2 1 0 2

So no batch with more than 2 defective lamps in the first 20 batches. Now we will simulate
100,000 batches and then count the number of batches with more than 2 defective lamps.

31

set.seed(0)
count_defective <- replicate(100000, sum(sample(c(0,1), 1000,

replace = TRUE, prob = c(0.999, 0.001))))
sum(count_defective > 2)
#> [1] 8022

We can use this to estimate the probability of getting more than two defective lamps in a
batch by dividing this by the total number of batches

sum(count_defective > 2) / 100000
#> [1] 0.08022

INFO What answer should we expect here?

If 𝑋 is the number of defective lamps in a batch of size 1,000, then you may already
know that 𝑋 will follow a binomial distribution with parameters 1,000 and 0.001:
𝑋 ∼ Bin(1000, 0.001). (Don’t worry if this doesn’t mean anything to you: we’ll be
learning about this properly later in the course!)
We can write

ℙ (𝑋 > 2) = 1 − ℙ (𝑋 = 0) − ℙ (𝑋 = 1) − ℙ (𝑋 = 2) .

So to calculate this we need to be able to evaluate the probability mass function of
this binomially distributed random variable. Of course R has a function for this, called
dbinom(). So we can calculate the probability that a batch has more than 2 defective
lamps as

1 - dbinom(0, 1000, 0.001) - dbinom(1, 1000, 0.001) -
dbinom(2, 1000, 0.001)

#> [1] 0.08020934

In fact, R also has a function pbinom() for calculating the distribution function. So we
could also have calculated ℙ (𝑋 > 2) = 1 − ℙ (𝑋 ≤ 2) with

1 - pbinom(2, 1000, 0.001)
#> [1] 0.08020934

Of course in this example it was faster to solve the problem by using the binomial distri-
bution instead of by simulation, but there are many real-world probability problems that

32

can not be solved analytically and for which simulation is the only viable approach.

Your turn

Set the seed to 0 and then simulate 10,000 batches of 2,000 lamps each to estimate the
probability that there are exactly two defective lamps in a batch of 2,000 lamps.
Now answer quiz question 6.

33

Lab 2: Introduction to data

INFO This worksheet is released under a Creative Commons Attribution-ShareAlike 3.0
Unported. This worksheet was adapted for OpenIntro by Andrew Bray and Mine
Çetinkaya-Rundel from a lab written by Mark Hansen of UCLA Statistics; it was
extended for the University of York by Gustav Delius, and subsequently by Stephen
Connor.

Some define Statistics as the field that focuses on turning information into knowledge. This
worksheet is designed to give you more practice with summarising and visualising the raw
information - the data. In this lab, you will gain insight into public health by generating
simple graphical and numerical summaries of a data set collected by the Centers for Disease
Control and Prevention (CDC). As this is a large data set, along the way you’ll also learn the
indispensable skills of data processing and subsetting.

Exclamation Remember!

As always, you should start the lab by creating a script file (with a sensible name), and
then adding each line of code to this file as you go, so that you can easily re-run it later
if necessary. Add your own comments to remind you what each chunk of code does!

The Behavioral Risk Factor Surveillance System

The Behavioral Risk Factor Surveillance System (BRFSS) is an annual telephone survey of
350,000 people in the United States. As its name implies, the BRFSS is designed to identify
risk factors in the adult population and report emerging health trends. For example, respon-
dents are asked about their diet and weekly physical activity, their HIV/AIDS status, possible
tobacco use, and even their level of healthcare coverage. The BRFSS Web site contains a
complete description of the survey, including the research questions that motivate the study
and many interesting results derived from the data.

We will focus on a random sample of 20,000 people from the BRFSS survey conducted in 2000.
While there are over 200 variables in this data set, we will work with a small subset.

34

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://www.cdc.gov/brfss

We begin by loading the data set of 20,000 observations into the R workspace. Loading the
data set may take a few seconds, so be patient. Use the following command to load the
data:

source("http://www.openintro.org/stat/data/cdc.R")

Once loaded, the data set cdc shows up in your Environment panel. It is in a format that
R calls a data frame. It is a table with each row representing a case and each column
representing a variable. We can have a look at the first few entries (rows) of our data with the
command

head(cdc)

and similarly we can look at the last few by typing

tail(cdc)

You could also look at all of the data frame at once by typing its name into the console, but
that might be unwise here: we know cdc has 20,000 rows, so viewing the entire data set
would mean flooding your screen. It’s better to take small peeks at the data with head, tail
or the subsetting techniques that you’ll learn in a moment.

Types of variables

You already know from the Intro Lab that to view the names of the variables in our data set
you can type the command

names(cdc)

This returns the names genhlth, exerany, hlthplan, smoke100, height, weight,
wtdesire, age, and gender. Each one of these variables corresponds to a question that
was asked in the survey. For example, for genhlth, respondents were asked to evaluate
their general health, responding either excellent, very good, good, fair or poor. The exerany
variable indicates whether the respondent exercised in the past month (1) or did not (0).
Likewise, hlthplan indicates whether the respondent had some form of health cover plan (1)
or did not (0). The smoke100 variable indicates whether the respondent had smoked at least
100 cigarettes in their lifetime. The other variables record the respondent’s height in inches,
weight in pounds as well as their desired weight, wtdesire, age in years, and gender.

35

Variables come in different types. It is important to distinguish between different types of
variables since methods for viewing and summarising data are dependent on variable type. A
variable is either quantitative or qualitative.

A variable that is quantitative (numeric) may be either discrete or continuous. A discrete
variable is a numerical variable that can assume a finite number or at most a countably
infinite number of values, for example, the number of students in a class. A continuous
variable is a numerical variable that can assume an uncountable number of values associated
with subsets of the real number line, for example, the height of a tree.

When a variable is qualitative, it is essentially defining groups or categories. Qualitative
variables are therefore also often referred to as categorical variables. When the categories
have no ordering the variable is called nominal. For example, a variable “music preference”
could have values such as “classical,” “jazz,” “rock,” or “other.” When the categories have a
distinct ordering, the variable is called ordinal. Such a variable might be educational level
with values GCSEs, A-levels, Bachelors degree, Masters degree, PhD.

The distinction between the different types is not always as clear cut as one would like.
Consider for example the variable height that represents the respondents’ height in inches.
Even though this is always rounded to integer values in the data set, it is still a continuous
variable, because non-integer values would make sense, even though they may not be used in
the data set.

Note that even categorical variables can take numerical values, because the categories could
be labelled by numbers. We see this for example in the variable exerany that takes the
values 0 and 1, with 1 representing that the respondent has exercised in the last month and
0 that they have not. This is a categorical variable. It is less clear whether it is ordinal or
nominal, but luckily for a variable that takes on only two possible values the distinction is of
no consequence. Only once there are at least three values will the statistical techniques differ
between ordinal and nominal variables.

Your turn

Look at the variables in this data set. For each variable, identify its data type. How
many of the variables are quantitative? How many are categorical?
Answer quiz question 1.

Summaries and tables

The BRFSS questionnaire is a massive trove of information. A good first step in any analysis is
to distil all of that information into a few summary statistics and graphics.

36

As a simple example, the function summary() returns a numerical summary: minimum, first
quartile, median, mean, second quartile, and maximum. For weight this is

summary(cdc$weight)

We will look more closely at the meaning of these summary statistics later.

While it makes sense to describe a quantitative variable like weight in terms of these statis-
tics, what about categorical data? We would instead consider the sample frequency or relative
frequency distribution. The function table() does this for you by counting the number of
times each kind of response was given. For example, to see the number of people who have
smoked 100 cigarettes in their lifetime, type

table(cdc$smoke100)

or instead look at the relative frequency distribution by typing

table(cdc$smoke100)/20000

Notice how R automatically divides all entries in the table by 20,000 in the command above.
This is similar to something we have already observed; when we multiplied or divided a vector
by a number, R applied that action across all entries in the vector. As we see above, this also
works for tables. Next, we make a bar plot of the entries in the table by putting the table
inside the barplot() command.

barplot(table(cdc$smoke100))

Notice what we’ve done here! We’ve computed the table of cdc$smoke100 and then immedi-
ately applied the graphical function, barplot. This is an important idea: R commands can be
nested. You could also break this into two steps by typing the following:

smoke <- table(cdc$smoke100)
barplot(smoke)

Here, we’ve made a new object, a table, called smoke (the contents of which we can see by
typing smoke into the console) and then used it in as the input for barplot.

37

Your turn

Create numerical summaries for height and age. Compute the relative frequency
distribution for gender and exerany. How many males are in the sample? What
proportion of the sample reports being in excellent health?
Answer quiz question 2.

The table command can be used to tabulate any number of variables that you provide. For
example, to examine which participants have smoked across each gender, we could use the
following.

table(cdc$gender, cdc$smoke100)

Here, we see column labels of 0 and 1. Recall that 1 indicates a respondent has smoked at
least 100 cigarettes. The rows refer to gender. To create a mosaic plot of this table, we would
enter the following command.

mosaicplot(table(cdc$gender, cdc$smoke100))

We could have accomplished this in two steps by saving the table in one line and applying
mosaicplot in the next (see the table/barplot example above).

We can also use a barplot to show how respondents’ general health differs by gender:

barplot(table(cdc$genhlth, cdc$gender),
beside = F,
legend.text = T,
xlab = "Gender",
ylab = "Frequency",
main = "General health by gender")

Your turn

Try changing beside = F to beside = T and see what changes. Which do you find
more informative?

LIGHTBULB Tip

Note that you can flip between plots that you’ve created by clicking the forward and
backward arrows in the Viewer window of RStudio, just above the plots.

38

Interlude: how R thinks about data

We mentioned that R stores data in data frames, which you might think of as a type of
spreadsheet. Each row is a different observation (a different respondent) and each column is a
different variable (the first is genhlth, the second exerany, and so on). We can see the size
of the data frame next to the object name in the workspace or we can type

dim(cdc)

which will return the number of rows and columns. Now, if we want to access a subset of
the full data frame, we can use row-and-column notation. For example, to see the sixth
variable of the 567th respondent, use the format

cdc[567, 6]

which means we want the element of our data set that is in the 567th row (meaning the 567th

person or observation) and the 6th column (in this case, weight). We know that weight is the
6th variable because it is the 6th entry in the list of variable names:

names(cdc)[6]

To see the weights for the first 10 respondents we can type

cdc[1:10, 6]

In this expression, we have asked just for rows in the range 1 through 10. We’ve already seen
that R uses the : notation to create a range of values, so 1:10 expands to 1, 2, 3, 4, 5, 6, 7, 8, 9,
10. You can see this by entering

1:10

Finally, if we want all of the data for the first 10 respondents, type

cdc[1:10,]

By leaving out an index or a range (we didn’t type anything between the comma and the
closing square bracket), we get all the columns. When starting out in R, this can be a bit
counterintuitive. As a rule, we omit the column number to see all columns in a data frame.
Similarly, if we leave out an index or range for the rows, we would access all the observations,

39

not just the 567th, or rows 1 through 10. Try the following to see the weights for all 20,000
respondents fly by on your screen

cdc[, 6]

R recognises that it is not very useful to put so many numbers on the screen, so stops after
1,000 entries.

Recall that column 6 represents respondents’ weight, so the command above reported all of
the weights in the data set. We have already seen an alternative method to access the weight
data by referring to the name. We can use any of the variable names to select items in our
data set, for example

cdc$weight

The dollar-sign $ tells R to look in data frame cdc for the column called weight. Since that’s
a single vector, we can subset it with just a single index inside square brackets. We see the
weight for the 567th respondent by typing

cdc$weight[567]

Similarly, for just the first 10 respondents

cdc$weight[1:10]

The command above returns the same result as the cdc[1:10, 6] command.

LIGHTBULB Tip

Both row-and-column notation and dollar-sign notation are widely used: which one you
choose to use depends on your personal preference.

Your turn

Answer quiz question 3.

40

A little more on subsetting

It’s often useful to extract all observations (cases) in a data set that have specific charac-
teristics. We accomplish this through conditioning commands. First, consider expressions
like

cdc$gender == "m"

or

cdc$age > 30

As we saw in Lab 1, these commands produce vectors of TRUE and FALSE values. There is
one value for each respondent, where TRUE indicates that the person was male (via the first
command) or older than 30 (second command).

Suppose we want to extract just the data for the men in the sample, or just for those over 30.
We can use the R function subset() to do that for us. For example, the command

mdata <- subset(cdc, cdc$gender == "m")

will create a new data set called mdata that contains only the men from the cdc data set. In
addition to finding it in your workspace alongside its dimensions, you can take a peek at the
first several rows as usual

head(mdata)

This new data set contains all the same variables but just under half the rows. It is also
possible to tell R to keep only specific variables, which is a topic we’ll discuss in a future lab.
For now, the important thing is that we can carve up the data based on values of one or more
variables.

As we saw in Lab 1, we can use several of these conditions together with & and |. The & is
read and so that

m_and_over30 <- subset(cdc, cdc$gender == "m" & cdc$age > 30)

will give you the data for men over the age of 30. The | character is read or so that

m_or_over30 <- subset(cdc, cdc$gender == "m" | cdc$age > 30)

41

will take people who are men or over the age of 30 (why that’s an interesting group is hard to
say, but right now the mechanics of this are the important thing). In principle, you may use as
many “and” and “or” clauses as you like when forming a subset.

Your turn

Create a new object called under23_and_smoke that contains all observations of re-
spondents under the age of 23 that have smoked at least 100 cigarettes in their lifetime.
Use the summary command to see the summary statistics for the weight variable in
this smaller data set.
Answer quiz question 4.

Creating new variables from old

Sometimes we wish to use variables in our dataset to create new measurements of interest.
We’ve seen that each variable in our dataset is stored as a column in the cdc data frame: each
column can be easily accessed using either row-and-column or dollar-sign notation, and then
manipulated as we would a vector. This means that it is simple to perform simple algebraic
operations on variables to create new ones.

For example, suppose that we wish to create a new variable, weight_centred, which mea-
sures the difference between a person’s weight and the mean weight of the entire sample. We
can do this by typing

weight_centred <- cdc$weight - mean(cdc$weight)

We call such a variable centred because it has been shifted so as to have zero mean:

summary(weight_centred)

(Note that if you type mean(weight_centred) then R returns the value −5.2492 × 10−15
instead of zero: this is just an artefact caused by rounding.)

Your turn

Create a new variable called male_height_centred that measures the difference
between each male respondent’s height and the mean height of all male respon-
dents. What fraction of male respondents are taller than the mean height of all male
respondents?

42

Answer quiz question 5.

Now let’s consider a new variable: the difference between desired weight (wtdesire) and
current weight (weight). Create this new variable by subtracting the two columns in the data
frame and assigning them to a new object called wdiff.

wdiff <- cdc$weight - cdc$wtdesire

We could then count how many people currently weigh more than their desired weight:

sum(wdiff > 0)

Your turn

What proportion of female respondents have a current weight which is exactly the same
as their desired weight?
Answer quiz question 6.

Finally, let’s consider another new variable that doesn’t show up directly in this data set:
Body Mass Index (BMI). BMI is a weight to height ratio and can be calculated as

BMI =
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑙𝑏)
ℎ𝑒𝑖𝑔ℎ𝑡 (𝑖𝑛)2

⋅ 703

where 703 is the approximate conversion factor to change units from metric (metres and
kilograms) to imperial (inches and pounds).

Your turn

Create a variable bmi which gives the BMI of each respondent in the dataset. (Hint: to
square each element of a vector x in R you can type x^2.) Check that the mean BMI
value of the cdc respondents is 26.30693.
Answer quiz question 7.

Suppose that we now choose one of the respondents in the cdc dataset at random: let

𝐴 = {the BMI of our randomly chosen respondent is greater than 34} .

What is ℙ (𝐴)? Since each person in the dataset is equally likely to be chosen, we can cal-
culate this probability by counting how many respondents have a BMI greater than 34, and
dividing by the total number of respondents:

43

sum(bmi > 34)/20000
#> [1] 0.0756

Your final exercise for this lab involves calculating a conditional probability. Recall that we
already saw that the mean BMI value is 26.30693. Define the event 𝐵 by

𝐵 = {the BMI of our randomly chosen respondent is greater than the mean value} .

Your turn

Answer quiz question 8.

44

Lab 3: Data and distributions

INFO This tutorial is adapted from OpenIntro and is released under a Creative Commons
Attribution-ShareAlike 3.0 Unported license. This lab was written for OpenIntro by
Andrew Bray and Mine Çetinkaya-Rundel, extended for the University of York by
Gustav Delius, and subsequently extended by Stephen Connor.

In the first part of this worksheet you will look in more detail at various numerical and
graphical summaries of data. This reinforces, and slightly expands on, what you have already
met in Lab 2 and is closely related to the material from chapter 16 in the textbook.

In the second part you will get a first glimpse at how statistics makes a connection between
probability theory and data: you will model the height variable in a dataset as a normally
distributed random variable.

Exclamation Remember!

As always, you should start the lab by creating a script file (with a sensible name), and
then adding each line of code to this file as you go, so that you can easily re-run it later
if necessary. Add your own comments to remind you what each chunk of code does!

Numerical summaries of data

Datasets

Data, according to The American Heritage Dictionary, is “Information, especially information
organised for analysis or used as the basis for a decision”. Data comes in all sizes and shapes.
Often it is disorganised and difficult to work with. The first step in data analysis is then to
clean and organise the data. We will assume that the data has already been organised into
what we call a dataset. A dataset consists of a number 𝑛 of observations of the values of one
or more variables.

45

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Here is an example of a small multivariate dataset, collected from a previous year of IPS
students:

Height(cm) Age(years) Eye colour # of textbooks Likes Stats

175 19 Green 1 Very much
160 23 Brown 2 Not at all
180 21 Blue 1 A bit
159 18 Brown 7 A bit

This dataset contains 𝑛 = 4 observations of five different variables. The variables are the
height, the age and the eye colour of students in the class, the number of probability text-
books they had looked at for this course, and the answer to the question: “How much do you
like Statistics?”.

Below you will see how this data is stored in R as a data frame. A data frame is just like the
above table, but with a bit of extra information about the types of the different variables.

Types of variables

Recall from Lab 2 that a variable is either quantitative or qualitative. It is important to
distinguish between different types of variables since methods for viewing and summarising
data are dependent on variable type.

The quantitative variables in our example dataset are “Height”, “Age” and “Number of text-
books”. Of these “Height” and “Age” are continuous variables; even if the height might be
given rounded to the nearest centimetre it would still be thought of as a continuous vari-
able because non-integer values would make sense. The “Number of textbooks” variable is
discrete.

Let us tell R about the values of these quantitative variables:

height <- c(175, 160, 180, 159)
age <- c(19, 23, 21, 18)
num_books <- c(1, 2, 1, 7)

The R function c() binds together its arguments into a vector. You already know how to work
with such vectors. For example, to get the height of the 3rd student you evaluate

46

height[3]
#> [1] 180

The qualitative variables in our example dataset are “Eye colour” and “Likes Stats”. Of these,
“Eye colour” is nominal and “Likes Stats” is ordinal. R refers to categorical variables as fac-
tors. We can tell R that a variable is qualitative with the factor() function as follows:

eye_col <- factor(c('Green', 'Brown', 'Blue', 'Brown'))

If you look for the eye_col variable in the Environment tab of your RStudio window you will
see that it is listed as: Factor w/ 3 levels "Blue","Brown",...: 3 2 1 2.

For the “Likes Stats” variable we also need to tell R how to order the categories.

likes_stats <- factor(c('Very much', 'Not at all', 'A bit', 'A
bit'),

levels = c('Not at all', 'A bit', 'Very
much'),

ordered = TRUE)

This allows R to know whether the second student likes statistics more than the fourth for
example:

likes_stats[2] > likes_stats[4]
#> [1] FALSE

We can now bind all these variables together into a data frame:

students <- data.frame(height, age, eye_col, num_books,
likes_stats)

Given a dataset, we want to make sense of it. We begin by summarizing the distribution of
the variables in the dataset. The first questions one would ask are: are the values centred
around a particular value, and then how much variation around that central value is there?

Central value of a variable

The most important way to define a “central” value for a collection of values for a quantita-
tive variable is the mean, which is an average of the values. If we have 𝑛 observations of a

47

variable 𝑋, denoted by 𝑥1, 𝑥2, … , 𝑥𝑛, then the mean is

̄𝑥𝑛 = (𝑥1 + ⋯ + 𝑥𝑛)/𝑛.

Take the variable “Age” from our example dataset. There we have

̄𝑥4 = (19 + 23 + 21 + 18)/4 = 81/4 = 20.25.

x <- students$age
mean(x)
#> [1] 20.25

One drawback of using the mean to define the centre of a dataset is that the mean can get
very much affected by extreme values. For example, if we added a fifth datapoint to the above
dataset, a mature student aged 58, then the mean would change to

̄𝑥5 = (19 + 23 + 21 + 18 + 58)/5 = 139/5 = 27.8.

xl <- c(x, 58) # this appends the number 58 to the end of the
vector x

mean(xl)
#> [1] 27.8

This value is outside the cluster of values around 20. An alternative to the mean that is less
affected by such outliers is the median. To define this we first list the values in ascending
order. We enclose the indices in this ordered set in parentheses to distinguish them from the
indices of the values in the unordered dataset. So we have the values

𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛).

The kth value 𝑥(𝑘) is often referred to as the kth order statistic. In our example

𝑥(1) = 18, 𝑥(2) = 19, 𝑥(3) = 21, 𝑥(4) = 23, 𝑥(5) = 58.

sort(xl)
#> [1] 18 19 21 23 58

48

The median is defined as

Med𝑛 = {
𝑥((𝑛+1)/2) if 𝑛 is odd
1
2 (𝑥(𝑛/2) + 𝑥(𝑛/2+1)) if 𝑛 is even

So for our small dataset of four age values we have

Med4 =
1
2
(𝑥(2) + 𝑥(3)) =

1
2
(19 + 21) = 20.

median(x)
#> [1] 20

For the larger dataset of five values including the outlier, we have

Med = 𝑥(3) = 21

still quite close to the centre of the cluster of values.

median(xl)
#> [1] 21

Your turn

What is the median height of the first four students?
Answer quiz question 1.

Amount of variability in a variable

The most important measure of the variability in the data around the central value is the
sample variance

𝑠2𝑛 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥𝑛)2.

For our sample data we get

49

𝑠24 = 1
3

4
∑
𝑖=1

(𝑥𝑖 − ̄𝑥4)2

= 1
3
((19 − 20.25)2 + (23 − 20.25)2 + (21 − 20.25)2 + (18 − 20.25)2)

= 1
3
((5

4
)
2
+ (11

4
)
2
+ (3

4
)
2
+ (9

4
)
2
)

= 236
48

≈ 4.917.

var(x)
#> [1] 4.916667

The age was measured in years. The variance is therefore measured in square years. It is
often useful to have a measure of the variability that has the same units as the variable itself.
Therefore one defines the sample standard deviation 𝑠𝑛 to be the square root of the

sample variance, 𝑠𝑛 = √𝑠2𝑛 .

sd(x)
#> [1] 2.217356

Like the mean, the variance is affected very much by outliers. In our example with the extra
datapoint 𝑥5 = 58 we find

var(xl)
#> [1] 288.7
sd(xl)
#> [1] 16.99117

A measure that is less affected by outliers is the median of absolute deviations,

MAD𝑛 = Med (|𝑥1 − Med𝑛|, … , |𝑥𝑛 − Med𝑛|) .

In our example datasets

MAD4 = Med (|19 − 20|, |23 − 20|, |21 − 20|, |18 − 20|) = Med(1, 3, 1, 2) = 1.5,

and

50

MAD5 = Med (|19 − 21|, |23 − 21|, |21 − 21|, |18 − 21|, |50 − 21|) = Med(2, 2, 0, 3, 29) = 2.

mad(x, constant=1)
#> [1] 1.5
mad(xl, constant=1)
#> [1] 2

We see that the outlier does not affect the median of absolute deviation nearly as much as it
affects the standard deviation.

Your turn

What is the variance in the height of the first four students?
Answer quiz question 2.

Empirical quantiles, quartiles, and IQR

We now introduce the quantiles which give us more detailed information about the distribu-
tion of values. The 𝑝-th quantile is a value so that a proportion 𝑝 of the values in the dataset
is below or equal to this value.

INFO Note

Because there are gaps between the values in the dataset, there is not a unique such
value. R provides nine different types of quantiles. We present here the one that R uses
as its default.

For 𝑝 ∈ [0, 1] we define the 𝑝-th quantile as

𝑞𝑛(𝑝) = 𝑥(𝑘) + 𝛼 (𝑥(𝑘+1) − 𝑥(𝑘))

where

𝑘 = ⌊ℎ⌋, 𝛼 = ℎ − ⌊ℎ⌋, with ℎ = (𝑛 − 1)𝑝 + 1.

Recall that ⌊𝑥⌋ (the floor of 𝑥) denotes the largest integer smaller or equal to 𝑥.

51

The 𝑝-th quantile is also referred to as the 100𝑝-th percentile. Three percentiles are given
special names:

• lower quartile = 25th percentile = 𝑞𝑛(0.25)
• median = 50th percentile = 𝑞𝑛(0.5)
• upper quartile = 75th percentile = 𝑞𝑛(0.75).

We calculate the upper and lower quartiles in our example dataset containing the age of 𝑛 = 4
students. For the lower quartile we have 𝑝 = 1/4 and we calculate

ℎ = (𝑛 − 1)𝑝 + 1 = 3
4
+ 1, 𝑘 = ⌊ℎ⌋] = 1, 𝛼 = ℎ − ⌊ℎ⌋ = 3

4
.

Then

𝑞4(0.25) = 𝑥(1) + 𝛼 (𝑥(2) − 𝑥(1)) = 18 + 0.75(19 − 18) = 18.75.

For the upper quartile, 𝑝 = 3/4, we find similarly

ℎ = (𝑛 − 1)𝑝 + 1 = 33
4
+ 1, 𝑘 = ⌊ℎ⌋] = 3, 𝛼 = ℎ − ⌊ℎ⌋ = 1

4
,

and
𝑞4(0.75) = 𝑥(3) + 𝛼 (𝑥(4) − 𝑥(3)) = 21 + 0.25(23 − 21) = 21.5.

To let R do the calculation for us we use

quantile(x)
#> 0% 25% 50% 75% 100%
#> 18.00 18.75 20.00 21.50 23.00

The 0% quantile is the minimum value and the 100% quantile the maximum value. These are
also known as the range of the data.

range(x)
#> [1] 18 23

By default the quantile() command gives us the quartiles. To get a particular quantile
use

quantile(x, 0.35)
#> 35%

52

#> 19.1

INFO Note

Our textbook uses a different convention for the quantiles that has ℎ = (𝑛 + 1)𝑝, which
is type 6 in R.

quantile(x, type=6)
#> 0% 25% 50% 75% 100%
#> 18.00 18.25 20.00 22.50 23.00

Use the command ?quantile in R to get more information. When there are many
values in the dataset then the difference between the alternative conventions will be
negligible.

The interquartile range, abbreviated as IQR, is the difference between the upper and the
lower quartile:

𝐼𝑄𝑅 = 𝑞𝑛(0.75) − 𝑞𝑛(0.25).

In our example we find 𝐼𝑄𝑅 = 2.75.

IQR(x)
#> [1] 2.75

The data

This week we’ll be working with measurements of body dimensions. This dataset contains
measurements from 247 men and 260 women, most of whom were considered healthy young
adults. The data is saved in an RData file. We download it from the internet and then load it
into R.

download.file("http://www.openintro.org/stat/data/bdims.RData",
destfile = "bdims.RData")

load("bdims.RData")

Let’s take a quick peek at the first few rows of the data.

53

head(bdims)

You’ll see that for every observation we have 25 measurements, many of which are either
diameters or girths. A key to the variable names can be found here, but we’ll be focusing on
just three columns to get started: weight in kg (wgt), height in cm (hgt), and sex (1 indicates
male, 0 indicates female).

Since males and females tend to have different body dimensions, it will be useful to create two
additional datasets: one with only men and another with only women.

mdims <- subset(bdims, bdims$sex == 1)
fdims <- subset(bdims, bdims$sex == 0)

Let us take a quick look at some summary statistics of the women’s height.

summary(fdims$hgt)
#> Min. 1st Qu. Median Mean 3rd Qu. Max.
#> 147.2 160.0 164.5 164.9 169.5 182.9

Note that this summary gives rounded results only. If you want more exact results you should
use the functions we introduced above, for example

mean(fdims$hgt)
#> [1] 164.8723

Your turn

Answer quiz question 3.

A so-called stem-and-leaf plot is one way of getting a quick view of the data.

stem(fdims$hgt)
#>
#> The decimal point is at the |
#>
#> 146 | 2
#> 148 | 59
#> 150 | 11
#> 152 | 0044444

54

http://www.openintro.org/stat/data/bdims.php

#> 154 | 4599008
#> 156 | 0002250055555555
#> 158 | 028800124455588
#> 160 | 000000000000000000002277790022233333334
#> 162 | 00112556666666666666688900222255888
#> 164 | 0013455501111111111111157
#> 166 | 00244488015666666666666666668
#> 168 | 223599999999004555
#> 170 | 0000002222222222355948
#> 172 | 15777777790224
#> 174 | 0000000022233333
#> 176 | 2255558
#> 178 | 089
#> 180 | 3
#> 182 | 9

Here the integer part of each data point is use as the stem and listed vertically. The last digit
(the leaf) is printed behind the vertical bar, one for each observation with the same stem.

The box-and-whisker plot, or boxplot for short, is an aptly named graphical representa-
tion of the summary statistics we have just introduced. It consists of a box that extends in the
vertical direction from the lower to the upper quartile, with a horizontal line through the box
at the median.

Whiskers may extend from the box:

• the upper whisker extends to the highest value in the dataset no more than 1.5 IQR
above the upper quartile. If there is no value in the dataset in this range then there will
be no upper whisker.

• similarly the lower whisker extends to the lowest value in the dataset no more than 1.5
IQR below the lower quartile.

Finally, any value in the dataset that falls outside the box and whiskers is drawn as a dot:
these values are referred to as outliers.

boxplot(fdims$hgt)

55

15
0

16
0

17
0

18
0

The purpose of a boxplot is to provide a thumbnail sketch of a variable for the purpose of
comparing across several categories. So we can, for example, compare the heights of men and
women with

boxplot(bdims$hgt ~ bdims$sex)

0 1

15
0

17
0

19
0

bdims$sex

bd
im

s$
hg

t

The notation here is new. The ~ character can be read “versus” or “as a function of”. So we’re
asking R to give us box plots of heights where the groups are defined by sex.

Data and probability distributions

It is natural to try to make a connection between variables in a dataset and random variables
and between observations of the variable in a dataset and a random sample from the random
variable. So we will think of the observations in the dataset as being produced by a probabil-
ity experiment. Or, said differently, we model the real-world variable as a random variable.

56

The task of Statistics is to determine what the distribution of that random variable should be
to best match the distribution of observed values in the dataset.

The normal distribution

In this lab we’ll investigate the probability distribution that is most central to statistics: the
normal distribution. If we are confident that a variable in our dataset is well described by
a normally distributed random variable, that opens the door to many powerful statistical
methods. Here we’ll use the graphical tools of R to assess the normality of our data.

We’ll be working with women’s heights. We will try to model this as a normal random vari-
able. To see how accurate that description is, we can plot a normal distribution curve on top
of a histogram of the observed values to see how closely the data follow a normal distribution.
This normal curve should have the same mean and standard deviation as the data. Let’s
calculate these statistics so that we can easily use them later.

fhgtmean <- mean(fdims$hgt)
fhgtsd <- sd(fdims$hgt)

Your turn

What is the standard deviation (in cm) in the observations of the women’s heights in the
dataset?
Answer quiz question 4.

Next we make a density histogram to use as the backdrop and use the lines function to
overlay a normal probability curve. The difference between a frequency histogram and a
density histogram is that while in a frequency histogram the heights of the bars add up
to the total number of observations, in a density histogram the areas of the bars add up to 1.
Frequency and density histograms both display the same exact shape; they only differ in their
y-axis. Using a density histogram allows us to properly overlay a density function curve over
the histogram since it too is normalised to have an area of 1 under the curve. To produce a
density histogram we use the hist() command, and include the parameter probability =
TRUE:

hist(fdims$hgt, probability = TRUE)
x <- 140:190
y <- dnorm(x, mean = fhgtmean, sd = fhgtsd)
lines(x, y, col = "blue")

57

Histogram of fdims$hgt

fdims$hgt

D
en

si
ty

150 160 170 180

0.
00

0.
02

0.
04

In the second and third lines of the above code we created the x- and y-coordinates for
the normal curve. We chose the x range as 140 to 190 in order to span the entire range of
fheight. To create y, we used dnorm to calculate the density of each of those x-values in a
distribution that is normal with mean fhgtmean and standard deviation fhgtsd. The final
command draws a curve on the existing plot (the density histogram) by connecting each of
the points specified by x and y. The argument col simply sets the colour for the line to be
drawn.If we left it out, the line would be drawn in black.

The top of the curve is cut off because the limits of the x- and y-axes are set to best fit the
histogram. To adjust the y-axis you can add the ylim argument to the histogram function.
We also put a better label on the x-axis and a better title.

hist(fdims$hgt, probability = TRUE, ylim = c(0, 0.06),
xlab="Women's height (in cm)",
main="Histogram of women's height")

lines(x, y, col = "blue")

58

Histogram of women's height

Women's height (in cm)

D
en

si
ty

150 160 170 180

0.
00

0.
02

0.
04

0.
06

Based on the this plot, it appears that the data are pretty well approximated by a normal
distribution.

Skewness

Next let us make a similar plot for the female age variable.

hist(fdims$age, probability = TRUE,
xlab="Women's age (in years)",
main="Histogram of women's age")

x <- 10:70
y <- dnorm(x, mean = mean(fdims$age), sd = sd(fdims$age))
lines(x, y, col = "blue")

59

Histogram of women's age

Women's age (in years)

D
en

si
ty

20 30 40 50 60 70

0.
00

0.
02

0.
04

0.
06

The age is clearly not normally distributed. The distribution of age is skewed towards the left,
towards younger age.

Such an assymmetry in a distribution is measured by the coefficient of skewness. A distribu-
tion like the one above that has a heavier or longer tail on the right has a positive skewness.
This is the first time that we meet a common phenomenon in R: much of R’s functionality
is provided by additional packages. If you search for skewness in the R help system, you
will see that there are two packages installed on the campus PCs that define a skewness
function, the e1071 package and the timeDate packages. We will use the former.

e1071::skewness(fdims$age)
#> [1] 1.185329

LIGHTBULB Tip

If you are working on your own computer, the package e1071 may not be
installed yet. In that case you have to issue the following command before the above
code will work:

install.packages("e1071")

Note how the function name is preceded by the name of the package and two colons. An
alternative way to use functions from a package is to load the package library:

60

library(e1071)

Then we can use the function without a prefix:

skewness(fdims$age)
#> [1] 1.185329

Data that has a distribution with a large skewness can not be well described by the normal
distribution because the normal distribution is symmetric and hence has no skewness.

Your turn

What is the skewness in the observations of the men’s age in the dataset?
Answer quiz question 5.

Using Q-Q plots

Eyeballing the shape of the histogram is one way to determine if the data appear to be nearly
normally distributed, but it can be frustrating to decide just how close the histogram is to the
curve. An alternative approach involves constructing a so-called Q-Q plot (Q-Q stands for
“Quantile-Quantile”). In a Q-Q plot the quantiles of one distribution are plotted against the
quantiles of another: if the two distributions agree, then this should produce a straight line.

In our case we want to plot the quantiles of the women’s height distribution against those of
the normal distribution. This is known as a normal Q-Q plot.

qqnorm(fdims$hgt)

61

−3 −2 −1 0 1 2 3

15
0

16
0

17
0

18
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

The quantiles of the standard normal distribution are plotted on the horizontal axis and the
observed quantiles on the vertical axis. To see better how close this is to the straight line that
would arise if the distribution was perfectly normal, R has a function to plot this straight
line:

qqline(fdims$hgt)

This plot for female heights shows points that tend to follow the line but with some errant
points towards the tails.

We’re left with the same problem that we encountered with the histogram above: how close is
close enough?

A useful way to address this question is to rephrase it as: what would the probability plots
look like if the data really came from a normal distribution? We can answer this by simulating
data from a normal distribution using rnorm().

set.seed(1)
sim_norm <- rnorm(n = length(fdims$hgt), mean = fhgtmean, sd =

fhgtsd)

Here the first argument indicates how many numbers you’d like to generate. We want this to
be the same as the number of heights in the fdims dataset, which we can determine using
the length function. The next two arguments to rnorm determine the mean and standard
deviation of the normal distribution from which the simulated sample will be generated.

62

We can take a look at the shape of our simulated dataset, sim_norm, as well as its normal
probability plot.

Your turn

Make a normal Q-Q plot of sim_norm. Do all of the points fall on the line? How does
this plot compare to the probability plot for the real data?

Even better than comparing the original plot to a plot generated from a single sample from
the normal distribution is to compare it to many more plots using the qqnormsim() func-
tion.

qqnormsim(fdims$hgt)

LIGHTBULB Tip

It may be helpful to click the Zoom button in the plot window, in order to see these
plots more clearly.

This command produces a 3x3 array of Q-Q plots: the first one (top-left) is the Q-Q plot of
the data, which we have already seen above. The other eight plots arise from simulating
random normal data with the same mean, standard deviation, and length as the data. (So if
you run this command multiple times the first plot shouldn’t change, but the others will as
new random numbers are used in the simulations each time.)

Your turn

Does the normal probability plot for fdims$hgt look similar to the plots created for the
simulated data? That is, do plots provide evidence that the female heights are nearly
normal?
Now analyse the data for female weights.
Answer quiz questions 6 and 7.

Normal probabilities

Once we decide that the distribution of values of a variable is approximately normal, we can
answer all sorts of questions about that variable related to probability by modelling that
variable as a normally distributed random variable. Take, for example, the question of, “What

63

https://rdocumentation.org/packages/openintro/versions/2.4.0/topics/qqnormsim

is the probability that a randomly chosen young adult female is taller than 164 cm?” 1

If we assume that female heights are normally distributed (a very close approximation is also
okay), we can model the height in cm as a normally distributed random variable 𝐻 with the
mean given by the sample mean and the variance given by the sample variance. Then the
probability that a randomly chosen young adult female is taller than 164 cm is given by

ℙ (𝐻 > 164) = 1 − ℙ (𝐻 ≤ 164) = 1 − 𝐹𝐻(164) .

In R, the distribution function of a normal random variable is calculated with the function
pnorm() and thus we obtain the desired probability with

1 - pnorm(q = 164, mean = fhgtmean, sd = fhgtsd)
#> [1] 0.5530166

Thus assuming a normal distribution has allowed us to calculate a theoretical probability. If
we want to calculate the probability empirically, we simply need to determine how many
observations fall above 164, then divide this number by the total sample size, as you’ve seen
before:

sum(fdims$hgt > 164) / length(fdims$hgt)
#> [1] 0.5153846

Although the probabilities are not exactly the same, they are reasonably close. The closer that
your distribution is to being normal, the more accurate the theoretical probabilities will be.

Your turn

Answer quiz question 8.

1The study that published this dataset is clear to point out that the sample was not random and therefore
inference to a general population is not suggested. We do so here only as an exercise.

64

Lab 4: Sampling distributions

INFO This tutorial is adapted from OpenIntro and is released under a Creative Commons
Attribution-ShareAlike 3.0 Unported license. This lab was written for OpenIntro by
Andrew Bray and Mine Çetinkaya-Rundel, extended for the University of York by
Gustav Delius, and subsequently extended by Stephen Connor.

This practical is about i.i.d. samples from random variables and drives home the fact that the
sample mean and the sample variance are themselves random variables with a distribution.
You will investigate this distribution and how it is affected by the sample size.

Exclamation Remember!

As always, you should start the lab by creating a script file (with a sensible name), and
then adding each line of code to this file as you go, so that you can easily re-run it later
if necessary. Add your own comments to remind you what each chunk of code does!

Independent and identically distributed (i.i.d.) samples

An i.i.d. sample of size 𝑛 is a collection of 𝑛 independent random variables 𝑋1, 𝑋2, … , 𝑋𝑛, each
with the same distribution. (We use the notation 𝑋 to refer to a generic random variable
having the same distribution as any of the 𝑋𝑖.) If we perform the probability experiment
and measure all these random variables, we will get a collection of 𝑛 numbers 𝑥1, 𝑥2, … , 𝑥𝑛.
The topic of this worksheet is how to learn something about the distribution of the ran-
dom variable 𝑋 from the distribution of the values of this sample. This follows on from our
investigations into simulation during Lab 1.

We saw in that lab that we can ask R to simulate an i.i.d. sample using the function
sample(). There we did it for pulling coloured balls out of bags, or sampling faulty light
bulbs. But it should come as no surprise that R can simulate random numbers from a wide
range of discrete and continuous distributions. Let us here consider i.i.d. samples from the

65

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

exponential distribution. Recall that if 𝑋 ∼ Exp(𝜆) then its density function is

𝑓𝑋(𝑥) = 𝜆𝑒−𝜆𝑥 , 𝑥 ≥ 0 .

The following command simulates a measurement of a sample of size 𝑛 = 100 from the
exponential distribution with parameter 𝜆 = 1.

x <- rexp(100, rate = 1)

Let us look at the distribution of the values in this sample by making a histogram.

hist(x)

You should now see a histogram displayed in the Plots panel at the lower right of the RStudio
window. R automatically chooses the width of the bins in the histogram, based on the range
of the data, using something called Sturge’s rule by default. We can suggest to R to use more
bins if we want to get a more detailed view. We can also specify the probability = TRUE
option so that the vertical axis shows the proportion of values in each bin instead of the
number.

hist(x, breaks = 20, probability = TRUE)

Let us compare this to the density of the exponential distribution by plotting that on top of
the histogram.

create a sequence of evenly spaced values between 0 and 5
xx <- seq(0, 5, 0.05)
plot the density of the Exp(1) distribution at each value
lines(xx, dexp(xx, rate = 1), col = "blue")

Now let us assume we did not already know that this sample was from an exponential distri-
bution with parameter 1. Let us instead assume that we were just given these 100 numbers,
and believe that they come from an Exp(𝜆) distribution: we want to use these numbers to
estimate 𝜆.

Estimating the expectation

In this lab we will in particular look at estimating the expectation of the underlying distribu-
tion. We of course know that an exponentially distributed random variable 𝑋 with parameter

66

𝜆 has an expectation 𝔼 [𝑋] = 1/𝜆. So if we can estimate 𝔼 [𝑋] we can also estimate the
parameter 𝜆.

We have seen that the sample mean

̄𝑋𝑛 = (𝑋1 + ⋯ + 𝑋𝑛)/𝑛

is going to be a good estimator of the expectation of 𝑋. The law of large numbers says
that this estimator gets better and better as 𝑛 → ∞. But for finite sample size 𝑛 there will be
some uncertainty in the estimate of 𝔼 [𝑋].

Let us calculate the value ̄𝑥100 that the sample mean ̄𝑋100 takes in the realisation of the
sample that we simulated above. When I ran mean(x) on my computer I obtained ̄𝑥100 =
1.0156238. However, you will get a different estimate for 𝔼 [𝑋] because the random number
generator will have given you a different set of numbers 𝑥1, … , 𝑥100. As you know, you will
get different random numbers each time you ask R for random numbers, except if you set
the seed of the random number generator to a specific value right before you ask R for the
random numbers. So if we run the code

set.seed(1)
x <- rexp(100, rate = 1)
mean(x)

we will all get the same set of values 𝑥1, … , 𝑥100, and thus the same estimate 𝔼 [𝑋] ≈
1.0306764.

Your turn

Answer quiz question 1.

Sampling distribution of the sample mean

It is not surprising that every time we take another realisation of the i.i.d. sample, we get
a different value for the sample mean. After all, the sample mean ̄𝑋𝑛 is a random variable.
It is useful to get a sense of just how much variability we should expect when estimating
the expectation value this way. The distribution of sample means ̄𝑋𝑛, called the sampling
distribution of the sample mean, can help us understand this variability.

We will visualise the sampling distribution of the sample mean by plotting the histogram
from a large number of realisations of ̄𝑋𝑛. Such a histogram gives an approximation to the
probability density function of the random variable ̄𝑋𝑛.

67

sample_means50 <- rep(0, 50000)
set.seed(0)
for(i in 1:50000){

x <- rexp(50, rate = 1)
sample_means50[i] <- mean(x)

}

Here we use R to create 50,000 realisations of the samples of size 𝑛 = 50, calculate the
value of the sample mean ̄𝑥50 for each realisation, and store all the results in a vector called
sample_means50. In the next subsection we’ll review how these lines of code work. For now
let’s plot a histogram of the values:

hist(sample_means50, breaks = 40, probability = TRUE)

Interlude: the for loop

Let’s take a break from the statistics for a moment to let that earlier block of code sink in.
You have just run your first for loop, a cornerstone of computer programming. The idea
behind the for loop is iteration: it allows you to execute code as many times as you want
without having to type out every iteration. In the case above, we wanted to iterate the two
lines of code inside the curly braces that simulates an i.i.d. sample of size 50 then save the
mean of that realisation into the sample_means50 vector. Without the for loop, this would
be painful:

sample_means50 <- rep(0, 50000)
set.seed(0)
x <- rexp(50, rate = 1)
sample_means50[1] <- mean(x)
x <- rexp(50, rate = 1)
sample_means50[2] <- mean(x)
x <- rexp(50, rate = 1)
sample_means50[3] <- mean(x)

and so on, 50,000 times.

With the for loop, these thousands of lines of code are compressed into a handful of lines.

To follow a bit more closely what is going on, I have added one extra line to the code below,
which prints the variable i during each iteration of the loop. Run this code.

68

sample_means50 <- rep(0, 50000)
set.seed(0)
for(i in 1:50000){

x <- rexp(50, rate = 1)
sample_means50[i] <- mean(x)
print(i)

}

Let’s consider this code line by line to figure out what it does. In the first line we initialized a
vector. In this case, we created a vector of 50,000 zeros called sample_means50. This vector
will store values generated within the for loop. In the second line we set the seed for the
random number generator.

The third line calls the for loop itself. The syntax can be loosely read as, “for every element i
from 1 to 50,000, run the following lines of code”. You can think of i as the counter that keeps
track of which step of the iteration you are on. Therefore, more precisely, the loop will run
once when i=1, then once when i=2, and so on up to i=50000.

The body of the for loop is the part inside the curly braces, and this set of code is run for
each value of i. Here, on every loop, we take an i.i.d. sample x of size 50 from the exponential
distribution, take its mean, and store it as the ith element of sample_means50.

In order to display that this is really happening, we asked R to print i at each iteration. This
line of code is optional and is only used for displaying what’s going on while the for loop is
running.

The for loop allows us not only to run the code 50,000 times, but to neatly package the
results, element by element, into the vector that we initialized at the outset.

Your turn

To make sure you understand what you’ve done in this loop, try running a smaller
version. Initialize a vector of 100 zeros called sample_means_small. Set the seed
to 0 and run a loop that on each iteration takes a realisation of a sample of size 50
from the exponential distribution with parameter 1 and stores the sample mean in
sample_means_small, but only iterate from 1 to 100. Print the output to your screen
(type sample_means_small into the console and press Enter). How many elements are
there in this object called sample_means_small? What does each element represent?
Answer quiz question 2.

69

Sample size and the sampling distribution

Mechanics aside, let’s return to the purpose for running the loop: to compute a sampling
distribution, specifically, this one:

hist(sample_means50, breaks = 25, probability = TRUE)

The sampling distribution that we computed tells us much about estimating 𝔼 [𝑋]. By look-
ing at the histogram we see that most of the time we are going to get an estimate close to the
true value of 1 but that there is some non-negligible probability of getting an estimate that is
off by as much as 0.2.

Indeed we can estimate the probability that the estimate is off by as much as 0.2 from the
sampling distribution by calculating the proportion of the 50,000 values in sample_means50
that are more than 0.2 away from 1.

mean(abs(sample_means50 - 1) > 0.2)

We can also determine the empirical distribution function 𝐹50 for ̄𝑋50. This is a step
function that jumps by 1/𝑛 at every value that is represented in the sample (or by multiples of
1/𝑛 if a value occurs multiple times), where 𝑛 is the sample size. The function ecdf() returns
the empirical distribution function:

F50 <- ecdf(sample_means50)

Let’s plot this distribution function

plot(F50)

INFO Note

The name ecdf stands for “empirical cumulative distribution function”. That it is called
cumulative contains no extra information, it just so happens that some people refer to
the distribution function as the “cumulative” distribution function to highlight the fact
that a distribution function at 𝑥 accumulates all the contributions from values up to 𝑥.

We can now for example look at the probability that, when using a sample of size 50, we
are going to get an estimate for 𝔼 [𝑋] that is more than 0.2 away from the true value of
𝔼 [𝑋] = 1.

70

ℙ (| ̄𝑋50 − 𝔼 [𝑋] | > 0.2) = ℙ (̄𝑋50 < 0.8) + ℙ (̄𝑋50 > 1.2)
= ℙ (̄𝑋50 < 0.8) + 1 − ℙ (̄𝑋50 ≤ 1.2)
= 𝐹 ̄𝑋50

(0.8) + 1 − 𝐹 ̄𝑋50
(1.2).

We can estimate that from the empirical distribution function as follows:

F50(0.8) + 1 - F50(1.2)

Thus, if we want to estimate 𝔼 [𝑋] with a precision of better than ±0.2 we should use a larger
sample, because the chance of getting an answer outside the desired precision is about 16%.

Your turn

Answer quiz question 3.

To get a sense of the effect that the sample size has on the sampling distribution, let’s build
up two more sampling distributions: one based on a sample size of 100 and another based on
a sample size of 200.

sample_means100 <- rep(0, 50000)
sample_means200 <- rep(0, 50000)
set.seed(0)
for(i in 1:50000){

x <- rexp(100, rate=1)
sample_means100[i] <- mean(x)
x <- rexp(200, rate=1)
sample_means200[i] <- mean(x)

}

Here we are able to use a single for loop to build two distributions by adding additional
lines inside the curly braces. Don’t worry about the fact that x is used for the name of two
different objects: in the second command of the for loop, the mean of x is saved to the
relevant place in the vector sample_means100; with the mean saved, we’re now free to
overwrite the object x with a new sample, this time of size 200. In general, any time you
create an object using a name that is already in use, the old object will get replaced with the
new one.

To see the effect that different sample sizes have on the sampling distribution, plot the three
distributions above each other. First increase the size of the Plots pane in RStudio by clicking
the icon at the top-right of the pane.

71

Then use the commands

par(mfrow = c(3, 1))
xlimits = range(sample_means50)
hist(sample_means50, breaks = 50, probability = TRUE, xlim =

xlimits)
hist(sample_means100, breaks = 50, probability = TRUE, xlim =

xlimits)
hist(sample_means200, breaks = 50, probability = TRUE, xlim =

xlimits)

The first command specifies that you’d like to divide the plotting area into 3 rows and 1
column of plots. The breaks argument specifies the number of bins used in constructing
the histogram. The xlim argument specifies the range of the x-axis of the histogram, and by
setting it equal to xlimits for each histogram, we ensure that all three histograms will be
plotted with the same limits on the x-axis.

To return to the default setting of plotting one plot at a time, run the following command:

par(mfrow = c(1, 1))

Your turn

When the sample size is larger, what happens to the centre of the sampling distribution?
What about the spread?
Answer quiz question 4.

Looking at the histogram for the sample mean of size 200, one gets the impression that it
looks very much like a normal distribution. Why would the sample mean for the exponential
distribution have a normal distribution? This is the Central Limit Theorem in action!

72

Estimating the variance

As we will see in lectures, we can also estimate the variance Var (𝑋) of a random variable
from the sample variance. The sample variance is calculated with the R function var():

x <- rexp(50, rate = 1)
var(x)

Your turn

Evaluate the above code a few times to see the wide range of estimates we get. Then
set the seed to 0 and use a for loop to create 50,000 realisations of the i.i.d. sample
of size 50 from an Exp(1) distribution, calculate the variance of each and store these
in an array sample_variances50. Then plot a histogram of these values of the
sample variance using the command hist(sample_variances50, breaks=50,
probability=TRUE).
Answer quiz question 5.

Notice that the sampling distribution for the sample variance does not look at all like a
normal distribution. The central limit theorem can be used to show that for sufficiently large
sample sizes the sampling distribution will again look normal; however a sample size of 50 is
clearly not enough for that.

Real-estate data

Now let’s look at some real data. This week we’ll consider real-estate data from the city
of Ames, Iowa. The details of every real estate transaction in Ames is recorded by the City
Assessor’s office.
Our particular focus for this lab will be all residential home sales in Ames between 2006 and
2010. Let’s load the data.

download.file("http://www.openintro.org/stat/data/ames.RData",
destfile = "ames.RData")

load("ames.RData")

As you can see in the Environment panel in RStudio, there is now a variable ames with 2930
observations of 82 variables. Let’s take a look at the names of the variables in this dataset.

73

names(ames)

We will focus our attention on two of the variables: the above ground living area of the house
in square feet (Gr.Liv.Area) and the sale price (SalePrice). To save some effort through-
out the lab, create two variables with short names that represent these two variables.

area <- ames$Gr.Liv.Area
price <- ames$SalePrice

We refer to the collection of all the house sales in Ames as the “population”. The term “popula-
tion” is used by statisticians not only to refer to populations of people but to any complete
collection of observations.

Your turn

Answer quiz question 6.

In this lab we have access to the entire population, but this is rarely the case in real life. Gath-
ering information on an entire population is often extremely costly or impossible. Because of
this, we often take a sample of the population and use that to understand the properties of
the population.

Taking a sample

If we were interested in estimating the mean living area of houses sold in Ames, but did not
have access to the data from all house sales, we could randomly select a smaller number of
sales to survey and collect the data only for those. Then we could use that sample as the
basis of our estimation. Let us assume we only have enough resources to observe 50 randomly
selected house sales. We can simulate taking such a random sample with the command

samp1 <- sample(area, 50)

This command randomly chooses 50 entries from the vector area, and this is then assigned
to the variable samp1. (You will remember the sample() function from Lab 1, where we
used it to generate random numbers by making it sample from the entries of the vector 1:6.
The difference here is that we are using the sample() function without the replace=TRUE
option, so that we do not get the same element more than once.)

Theoretically we model such a sample with a sequence of i.i.d. random variables 𝑋1, … , 𝑋50.
This is now a sample from the distribution of the area among all houses.

74

INFO Note

Because we are sampling without replacement from a finite population, the 𝑋𝑖 are not
strictly independent. But we often assume that the population is so large compared to
the sample size that the dependence is negligible.

The vector samp1 contains a particular realisation of those random variables 𝑋1, … , 𝑋50. The
estimator that we use to estimate the average living area in homes in Ames is the sample
mean, i.e., the random variable

̄𝑋50 = (𝑋1 + ⋯ + 𝑋50)/50.

For our realisation of the sample it takes the value

mean(samp1)

Depending on which 50 homes you randomly selected, your estimate could be a bit above or
a bit below the true population mean of 1499.69 square feet. In general, though, the sample
mean turns out to be a pretty good estimate of the average living area, and we were able to
get it by sampling less than 3% of the population.

Your turn

Take a second realisation of the sample, also of size 50, and call it samp2. How does
the mean of samp2 compare with the mean of samp1? Take two more samples, one of
size 100 and one of size 1,000. Which would you think would provide a more accurate
estimate of the “true” mean?
Answer quiz question 7.

Sampling distribution

Not surprisingly, every time we take another random sample, we get a different value for
the sample mean. It is useful to get a sense of just how much variability we should expect
when estimating the expected value this way, just as when we were working with simulated
data from an exponential distribution earlier in this lab. So we again want to understand the
sampling distribution of the sample mean ̄𝑋50.

We will visualise the sampling distribution by plotting the histogram for 5,000 realisations
of ̄𝑋50. As we know, such a histogram gives an approximation to the probability density
function.

75

Exclamation-Triangle Warning

Possibility of confusion: we are taking a sample of size 5,000 from the sampling
distribution of the sample mean of a sample of size 50!

set.seed(12)
area_sample_means50 <- rep(0, 5000)
for(i in 1:5000){

samp <- sample(area, 50)
area_sample_means50[i] <- mean(samp)

}
hist(area_sample_means50, breaks = 25, probability = TRUE)

Here we use R to create 5,000 realisations of the samples of size 50, calculate the value of the
sample mean for each, and store each result in a vector called area_sample_means50.

Your turn

Answer quiz question 8. (Be careful not to overwrite the variable
area_sample_means50 because we still want to use it below.)

The sampling distribution that we computed tells us much about estimating the average
living area of homes in Ames. Because the sample mean is an unbiased estimator (we’ll
be learning about what this means next week!), the sampling distribution has its mean at the
true average living area, and the spread of the distribution indicates how much variability is
induced by sampling only 50 homes.

We can also determine the empirical distribution function 𝐹50 for ̄𝑋50:

Farea50 <- ecdf(area_sample_means50)
plot(Farea50)

We can now for example look at the probability that, when using a sample of size 50, we are
going to get an estimate for 𝔼 [𝑋] that is more than 100 away from the true population mean
area of 1499.69:

ℙ (| ̄𝑋50 − 1499.69| > 100) = ℙ (̄𝑋50 < 1399.69) + ℙ (̄𝑋50 > 1599.69)
= ℙ (̄𝑋50 < 1399.69) + 1 − ℙ (̄𝑋50 ≤ 1599.69)
= 𝐹 ̄𝑋50

(1399.69) + 1 − 𝐹 ̄𝑋50
(1599.69).

76

We can estimate that from the empirical distribution function as follows:

Farea50(1399.69) + 1 - Farea50(1599.69)
#> [1] 0.1612

(If you used a different random seed before producing area_sample_means50 then you’ll
get a slightly different answer here, of course.) Thus, if we want to estimate 𝔼 [𝑋] with a
precision of better than ± 100 we should use a larger sample, because the chance of getting an
answer outside the desired accuracy is about 16%.

Your turn

Answer quiz question 9.

Effect of the size of the sample

To get a sense of the effect that sample size has on the sampling distribution, let’s build up
two more sampling distributions: one based on a sample size of 10 and another based on a
sample size of 100.

area_sample_means10 <- rep(0, 5000)
area_sample_means100 <- rep(0, 5000)
for(i in 1:5000){

samp <- sample(area, 10)
area_sample_means10[i] <- mean(samp)
samp <- sample(area, 100)
area_sample_means100[i] <- mean(samp)

}

To see the effect that different sample sizes have on the sampling distribution, we plot the
three distributions above each other.

par(mfrow = c(3, 1))
xlimits <- range(area_sample_means10)
hist(area_sample_means10, breaks = 20, xlim = xlimits)
hist(area_sample_means50, breaks = 20, xlim = xlimits)
hist(area_sample_means100, breaks = 20, xlim = xlimits)
par(mfrow = c(1, 1))

77

Questions:

1. When the sample size is larger, what happens to the centre?

2. What about the spread?

Answers:

1. The centre does not really change. We are using an unbiased estimator, so the expecta-
tion of the sampling distribution always stays at the true population mean.

2. The spread decreases. More precisely, the variance of the sampling distribution is
inversely proportional to the sample size. So as the sample size changes by a factor of
10, the variance of the sampling distribution should change by a factor of 1/10.

Let us check this last claim:

var(area_sample_means10)/var(area_sample_means100)

Why is the ratio not exactly 10? This is because we are only estimating the variance of the
sampling distribution from the sample variance in a sample of size 5,000 and that estimate is
not exact.

You only have one sample

In practice, of course, you will only have the resources to take a single sample. You will not
be able to build up a picture of the sampling distribution as we have done here by taking
thousands of samples. But without knowing the sampling distribution, you have no way of
knowing how precise your estimate is likely to be. This is a problem.

How confident can you be in your estimate from a sample if you do not know the sampling
distribution? This is something we will discuss in lectures.

78

Lab 5: Smarties

INFO This worksheet was written for the University of York by Stephen Connor, based
on work of Gustav Delius, and is released under a Creative Commons Attribution-
ShareAlike 3.0 Unported license.

This final lab is themed on smarties! It brings together many of the ideas that we’ve met
throughout the semester, both in probability and statistics.

Smarties and probability

Waiting for a blue

We know that there are eight colours of smarties. Let’s start by storing these as a list in R.

colours_list <- c('red', 'green', 'blue', 'yellow',
'orange', 'pink', 'violet', 'brown')

We continue to work with the model that each smartie has a random colour, and that the
colours of different smarties are independent of each other. As we did in lectures, we write

𝑝𝐵 = ℙ (a smartie is blue)

and so on.

Suppose that someone only likes blue smarties: they keep discarding smarties until they find
the first blue one. How many smarties will they work through until they find the first blue
one (including the blue one that they find, and eat!)? Since each smartie has probability 𝑝𝐵
of being blue (and probability 1 − 𝑝𝐵 of not being blue), we can model this as a sequence of
independent Bernoulli trials, in which we’re waiting for the time of the first success (where
finding a blue smartie is regarded as a “success”).

Letting 𝑋 denote the number of smarties that this person works through (including the blue
one), our assumptions imply that 𝑋 ∼ Geom(𝑝𝐵), and that 𝔼 [𝑋] = 1/𝑝𝐵.

79

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Let’s get R to simulate the sequence of Bernoulli trials. We need to keep sampling from the
vector colours_list until we see a blue. We’ve already seen (in Lab 4) how to use a for()
loop to iterate through a large number of calculations, but that required us to tell R exactly
how many iterations were required: here we don’t know how many samples will be needed!
So we require a different kind of loop – one that will keep evaluating until some condition is
satisfied. We shall use a while() loop:

num_smarties <- 0
new_smartie <- ''
while (new_smartie != 'blue') {

sample until get a blue smartie
new_smartie <- sample(colours_list, 1)
print(new_smartie)
increase the number of smarties seen by 1
num_smarties <- num_smarties + 1

}
num_smarties

Let’s pick this apart a little. At the start we set num_smarties to zero: this is going to count
how many smarties we’ve seen. We also create a variable called new_smartie, which records
the colour of the latest smartie that we’ve seen: this is initialised to be an empty string.

Now we get to the while() loop. R first of all evaluates the condition in the round brackets;
that is, it looks at whether the expression new_smartie != 'blue' is TRUE or FALSE.
(Recall from Lab 1 that the expression != means “is not equal”.) Since the empty string is not
equal to the strong 'blue', this test returns TRUE, and this tells R to evaluate the commands
in the curly brackets.

At this point it samples a smartie colour from colours_list, and updates the value of
new_smartie to equal this colour; the print command shows the new colour – this isn’t
really necessary, but should help you to check that the code is functioning as expected. It
then adds one to the num_smarties counter.

Now it goes back to the condition in the while() loop, and checks again to see whether
new_smartie is 'blue'. We keep repeating the above steps until this test evaluates to
FALSE (which will happen exactly when we have seen a blue smartie for the first time). When
this happens, the code exits the loop and returns the final value of num_smarties: this tells
us how many times the while() loop was evaluated, and therefore how many smarties were
sampled.

We can now repeat this experiment multiple times, by combining it with a for() loop, as
you’ve seen before. For example, to do this 10 times we could use the following code:

80

set up vector of zeros, length 10
num_smarties <- rep(0, 10)
for (i in 1:10) {

sample until get a blue smartie
new_smartie <- ''
while (new_smartie != 'blue') {
new_smartie <- sample(colours_list, 1)
increase the number of smarties seen by 1
num_smarties[i] <- num_smarties[i] + 1

}
}
look at the vector of smartie counts
num_smarties

Your turn

Answer quiz question 1.

Collecting a full set

Now suppose that, rather than waiting until we’ve seen the first blue smartie, we want to
keep sampling smarties until we’ve got at least one of each colour. Let’s first use R to
simulate this experiment, and then think a bit about the theory. We begin by creating a
simple data frame of zeros, with one column for each colour.

collection <- data.frame(matrix(0, ncol = 8, nrow = 1))
colnames(collection) <- colours_list

We can now sample smarties, and keep track of how many we’ve seen of each colour by
simply adding one to the column containing the colour that we observe. A simple way to do
that is to get R to sample a number j from the vector 1:8, and then to add one to column j
of collection.

But how long do we need to keep doing this? We don’t know how many samples will be
needed, so we should again use a while() loop. The condition that we want R to check is
whether or not there are any zeros in the data frame collection: if there is at least one zero,
then there’s at least one colour smartie that we haven’t yet seen, and so we need to keep
sampling.

81

We can check whether a particular element appears in a data frame (or vector, etc) using
%in%. For example, to check whether the number 3 appears in the vector (1,2,3,4) we can do
the following:

3 %in% c(1,2,3,4)

You can check that if we try the same thing with a vector not containing 3, we get an output
of FALSE:

3 %in% c(1,2,5,4,6,6)

So we can put all of this together as follows:

collection <- data.frame(matrix(0, ncol = 8, nrow = 1))
colnames(collection) <- colours_list
set.seed(6)
while (0 %in% collection) {

while there are any zeros in the data frame, keep sampling
j <- sample(1:8, 1)
collection[j] <- collection[j] + 1

}
collection

Your turn

Run the code above.
Now answer quiz question 2.

We can then look at the total number of smarties that we saw before observing at least one of
each colour:

sum(collection)

This code gives us a single sample from the distribution of a random variable 𝑆, which counts
the total number of smarties that we see until we have observed at least one of each colour.
By repeating this experiment we can estimate the distribution of 𝑆.

Your turn

Answer quiz question 3.

82

INFO The distribution of 𝑆

We can decompose 𝑆 into a sum of random variables:

𝑆 = 𝑆1 +
8
∑
𝑖=2

(𝑆𝑖 − 𝑆𝑖−1) .

Here the random variable 𝑆𝑖 records the first time that we have observed exactly 𝑖
different colours of smarties. So 𝑆1 = 1 (with probability one), because once we’ve seen
one smartie we will definitely have seen exactly one colour! 𝑆2 is the number of smarties
until we’ve seen 2 different colours: that is random, and could take any value in the set
{2, 3, 4, … }. And of course 𝑆 = 𝑆8, the time when we’ve first seen all 8 colours.
Now note that, once we’ve seen 𝑖 − 1 colours, the number of additional smarties that we
get through until we’ve seen exactly 𝑖 colours has a geometric distribution: as we see
each smartie we count it as a “success” if it’s a new colour, and a “failure” if it’s a colour
that we’ve already observed. The probability of success, when we’ve already seen 𝑖 − 1
colours, is 1 − (𝑖 − 1)/8. That is,

𝑆𝑖 − 𝑆𝑖−1 ∼ Geom((9 − 𝑖)/8) , 𝑖 = 2, … , 8 .

(Furthermore, the random variables (𝑆𝑖 − 𝑆𝑖−1) are independent. Convince yourself of
this!)
So 𝔼 [𝑆𝑖 − 𝑆𝑖−1] = 8/(9 − 𝑖), and we can use linearity of expectation to deduce that

𝔼 [𝑆] = 1 +
8
∑
𝑖=2

8
9 − 𝑖

= 8 (1 + 1
2
+ 1
3
+ ⋯ + 1

8
) ≈ 21.74 .

Smarties and statistics

In Lab 4 we created random samples rather artificially, by taking samples from a large real-
estate dataset. Let’s now look at a situation in which we naturally have a set of random
samples - one from each student taking part in an experiment.

A few years ago, a colleague collected data from students by giving each one a small box
of about 40 smarties, each of which can be viewed as a sample from the total population of
smarties. For each of the eight possible colours, students counted how many smarties of that
colour were in their box, and these numbers were collected into a comma separated value
(.csv) file.

83

The data

Let’s first of all download and read in the data:

download.file(
"https://sbconnor.github.io/IPS/labs/ips-smarties.csv",

destfile = "ips-smarties.csv")
smarties <- read.csv("ips-smarties.csv")

This should create a data frame smarties that will show up in the Environment pane of
RStudio. It will inform us that the data frame contains 282 observations of 12 variables. The
first thing we always do after loading some data is to look at the first few observations:

head(smarties)

So we see that the data frame has one column for each colour as well as for the student’s first
name and the year, hour and minute when the data was entered into the spreadsheet. Here
we want to concentrate on the colour counts, so we take only the last 8 columns and assign
them to a new data frame that we choose to call counts.

counts <- smarties[, 5:12]
head(counts)

Note how R allows us to address all rows of columns 5 to 12 of the smarties data frame with
the notation smarties[, 5:12]. Remember (see Lab 2) that the empty slot before the
comma means we want all rows, and the 5:12 after the comma means we want columns 5
to 12.

LIGHTBULB Tip

We could alternatively have written counts <- smarties[, -(1:4)], which would
have told R to drop columns 1 to 4.

Next we want to know the sizes of the samples. For that we just have to add up the counts of
all colours, i.e., we have to sum across each row.

n <- rowSums(counts)

To get a quick impression of the distribution of sample sizes we can look at

84

boxplot(n)

We notice that there are some extreme outliers! Let us sort the list of sample sizes to get a
better idea:

sort(n)

It looks like some students were too hungry to do the count before starting to eat. Further-
more, one student has clearly mistyped: there could not possibly be 238 smarties in a box! Let
us look at this entry in detail.

counts[n==238,]

(Note how we were able to select only the row that corresponds to the observation with
n=238.) It seems clear that the student typed 200 when they meant 2 for the number of red
smarties. Let’s fix this.

counts$red[n==238] <- 2
n <- rowSums(counts)
boxplot(n)

Exclamation-Triangle Warning

Of course tampering with data like this is dangerous. If you do this, you need to always
document what you have changed and why.

We might also want to consider removing some other outliers, but for now we’ll keep them.

Estimating probabilities

Next we calculate the estimated probabilities for the different colours that can be obtained
from each sample, by dividing the counts by the sample size.

ratios <- counts/n
head(ratios)

Note again how easily R can work with entire data frames at once. Here we are dividing the
data frame counts by the vector n and R has no difficulties understanding what we mean.

85

We see that as expected, each sample gives different estimates for the probabilities. We can
get a quick overview of the distribution of these estimates by making a boxplot diagram.

boxplot(ratios, col = colours_list)

There is a very noticeable outlier with an unusually high proportion of blue smarties. Let’s
look at the size of the sample that this observation comes from.

n[ratios$blue >= 0.4]

This is one of the unusually small samples. Let us look at the plot when we exclude the
unusually small and large samples.

ratios_clean <- ratios[abs(n - mean(n)) < 10,]
boxplot(ratios_clean, col = colours_list)

That removes a few more outliers: we’re now left with 278 observations.

We get the best possible estimate of the probabilities by combining all our samples into one
big sample. To do this we just need to sum along the columns.

counts_total <- colSums(counts)
sort(counts_total)

We see that blue and violet are particularly abundant. We again get the estimates for the
probabilities by dividing the counts by the sample size.

n_total <- sum(counts_total)
probs <- counts_total/n_total
barplot(probs, col = colours_list)
lines(c(0, 10), c(1/8, 1/8), lty=2) # add dashed line at height

1/8

Not all colours are equal

The sample size is now large enough to allow us to say that it is unlikely that our data would
have arisen if all colours had been equally likely.

86

For example, let’s look at the total number of blue smarties, which came out as 1589. If the
true probability were 𝑝𝐵 = 1/8 then the number of blue smarties among the total number of
1.1103 × 104 smarties would be distributed as Bin(1.1103 × 104, 1/8). Hence we can use the
distribution function of the binomial distribution to calculate the probability of getting an
estimate as large or larger than the observed one:

1 - pbinom(counts_total['blue'], n_total, 1/8)

We see that getting such a large number of blue smarties would be highly unlikely if the true
probability for a smartie to be blue were equal to 1/8.

Your turn

The total number of brown smarties is quite low. How likely is it to get a number that
low, or lower, if the probability for a smartie to be brown is 1/8?
Answer quiz question 4.

Sampling distributions

Now let us take a closer look at the sampling distributions for the probabilities. Let’s start
with the yellow smarties:

hist(ratios$yellow, probability = TRUE, col = 'yellow', ylim =
c(0,8))

We expect this to be approximately an i.i.d. sample from the sample mean ̄𝑌40. I say “approx-
imately” because not all samples had size exactly equal to 40, but close enough. ̄𝑌40 has an
expectation of 𝑝𝑌 and a variance of 𝑝𝑌(1 − 𝑝𝑌)/40. So the histogram of the observed values
should be close to the density of the normal distribution with this mean and this variance. Let
us plot this density on top of the histogram:

x <- seq(min(ratios$yellow), max(ratios$yellow), length.out = 100)
lines(x, dnorm(x, mean=probs['yellow'],

sd=sqrt(probs['yellow']*(1-probs['yellow'])/40)))

That looks pretty reasonable. Just to reassure us that it did not particularly matter that not all
samples are of size exactly 40, let us also plot the densities corresponding to sample sizes 37
and 43.

87

lines(x, dnorm(x, mean=probs['yellow'],
sd=sqrt(probs['yellow']*(1-probs['yellow'])/37)))

lines(x, dnorm(x, mean=probs['yellow'],
sd=sqrt(probs['yellow']*(1-probs['yellow'])/43)))

These densities are all fairly similar.

Now let’s use a for loop to make such a histogram for the sampling distribution of every
colour:

par(mfcol=c(2,4))
for (i in 1:8) {

hist(ratios[[i]], probability = TRUE, col = colours_list[i],
ylim = c(0,8),
xlab = colours_list[i], main = "")

x <- seq(min(ratios[[i]]), max(ratios[[i]]), length.out = 100)
lines(x, dnorm(x, mean=probs[i],

sd=sqrt(probs[i]*(1-probs[i])/40)))
}
par(mfcol=c(1,1))

The theoretical considerations agree pretty well with our data. You could also produce Q-Q
plots to check the quantiles of each distribution against those of the normal distribution: see
Lab 3 for a reminder of how to do this.

Correlations

Our model also makes predictions about the covariances between the counts. The theo-
retical result for the covariance between the number of smarties of two different colour, as
we calculated in a lecture, is −𝑛 times the product of the probabilities of the colours. That
is, if 𝑌 denotes the number of yellow smarties, and 𝐵 denotes the number of blue smarties,
then Cov (𝐵, 𝑌) = −𝑛𝑝𝑌𝑝𝐵, where 𝑝𝐵 is the probability of a random smartie being blue. In
particular if our model is correct the covariances should all be negative.

INFO Note

This makes intuitive sense! If we observe a large number of one colour, we should expect
to see fewer of another colour, given that we expect each box to contain approximately
40 smarties.

88

R can estimate all these covariances from the data in one go.

cov(counts)

We see that some estimated covariances involving the number of brown smarties are positive.
However it has to be taken into account that our dataset is not really large enough to make
very reliable statements, given the small number of brown smarties. If these positive covari-
ances persisted also in a larger dataset then we would have to modify our model and drop
the assumption of the independence between individual smarties. It is quite conceivable that
the mixing among smarties in the factory is not perfect, so that on the conveyor belt that fills
the smarties into their boxes, smarties of similar colours are still clustered together, making it
more likely that consecutive smarties are of the same colour.

We can also calculate the correlation coefficients among the ratios:

cor(ratios)

Of course it is also possible that there were observational errors, due to similarities between
different colours. So perhaps the strong negative correlation between orange and red is due to
the misclassification of some red smarties as orange smarties.

Your turn

Extract the rows of data corresponding to counts that were made in the year 2019. Using
only these samples, estimate the probabilities of the different colours.
Answer quiz question 5.

Take a look at the probability that we would observe so many blue smarties if all colours had
been equally likely. There is definitely something strange going on!

Confidence intervals

Finally, we turn our attention to deriving a confidence interval for the probability of a random
smartie being yellow. Under the assumption of independence between the smarties, we have
that the number of yellow smarties in a box, 𝑌, has a Bin(𝑛, 𝑝𝑌) distribution, where 𝑝𝑌 is the
probability that an individual smartie is yellow, and 𝑛 is the number of smarties in a box.
We already know that 𝑌/𝑛 is an unbiased estimator for the probability 𝑝𝑌. We now want to
derive a confidence interval for 𝑝𝑌.

89

We can write 𝑌 as the sum of independent and identically distributed random variables,

𝑌 =
𝑛
∑
𝑖=1

𝑌𝑖 ,

where 𝑌𝑖 is the indicator random variable for the event that the ith smartie in the box is yellow.
Therefore we know from the central limit theorem rule of thumb that 𝑌 is approximately
normally distributed

𝑌 ∼ N(𝑛𝑝𝑌, 𝑛𝑝𝑌(1 − 𝑝𝑌)) .

We can transform this to obtain a random variable which approximately follows a standard
normal distribution:

𝑍 =
𝑌 − 𝑛𝑝𝑌

√𝑛𝑝𝑌(1 − 𝑝𝑌)
∼ N(0, 1) .

It follows that
ℙ (−𝑧𝛼/2 < 𝑍 < 𝑧𝛼/2) ≈ 1 − 𝛼 .

We now only have to translate the condition on 𝑍 into a condition on 𝑝𝑌 to get our approxi-
mate 100(1 − 𝛼)% confidence interval for 𝑝𝑌.

− 𝑧𝛼/2 < 𝑍 < 𝑧𝛼/2
⇔ 𝑍 2 < 𝑧2𝛼/2

⇔
(𝑌 − 𝑛𝑝𝑌)2

𝑛𝑝𝑌(1 − 𝑝𝑌)
< 𝑧2𝛼/2

⇔ (𝑌 − 𝑛𝑝𝑌)2 − 𝑛𝑝𝑌(1 − 𝑝𝑌)𝑧2𝛼/2 < 0

⇔ 𝐿 < 𝑝𝑌 < 𝑈 ,

where 𝐿 and 𝑈 are the solutions of the quadratic equation

(𝑌 − 𝑛𝑝𝑌)2 − 𝑛𝑝𝑌(1 − 𝑝𝑌)𝑧2𝛼/2 = 0 .

Solving this we get

𝑈 =
𝑌 + 1

2𝑧
2
𝛼/2 + √

1
4𝑧

4
𝛼/2 + 𝑧2𝛼/2(𝑌 − 𝑌 2/𝑛)

𝑛 + 𝑧2𝛼/2
,

𝐿 =
𝑌 + 1

2𝑧
2
𝛼/2 − √

1
4𝑧

4
𝛼/2 + 𝑧2𝛼/2(𝑌 − 𝑌 2/𝑛)

𝑛 + 𝑧2𝛼/2
.

90

Let’s take our observed counts of yellow smarties, and use these to calculate approximate 95%
confidence intervals for 𝑝𝑌.

extract counts of yellow smarties
y <- counts$yellow
observed proportion of yellows in each box
prop_y <- y/n

limits of 95% confidence interval for p_Y, using binomial model
z <- qnorm(0.975)
u <- (y+z^2/2+sqrt(z^4/4+z^2*(y-y^2/n)))/(n+z^2)
l <- (y+z^2/2-sqrt(z^4/4+z^2*(y-y^2/n)))/(n+z^2)

plot these estimates and their confidence intervals
plot(NULL, type = "l", xlab = "p_y", ylab = "",

xlim = c(0.0, 0.45), ylim = c(0, 10))
for (i in 1:10) {

lines(c(l[i], u[i]), c(i, i))
points(prop_y[i], i, pch = 20)

}

Here we have calculated the values of 𝑢 and 𝑙 for each of the first 10 boxes of smarties, and
then plotted these values as a stack of horizontal lines. We’ve added a single point on each
line to show the observed proportion of yellow smarties in each box; note that the confidence
intervals are not symmetric about this value.

If we wanted to see how many of these confidence intervals contain the value 0.2 (for exam-
ple), we could do this as follows:

sum(l[1:10] < 0.2 & 0.2 < u[1:10])

Your turn

Edit the code above to plot 90% confidence intervals for the first 100 smartie boxes.
What proportion of these intervals contain the value 1/8?
Answer quiz question 6.

Finally, suppose that we group all our smartie data together and use it to estimate 𝑝𝑌. Our
overall smartie counts were as follows

91

counts_total
#> red green blue yellow orange pink violet brown
#> 1325 1347 1589 1410 1398 1252 1547 1235

and so our point estimate of 𝑝𝑌 is just 1410/11103 = 0.127. We can construct a single 95%
confidence interval for 𝑝𝑌, using the complete set of data, as follows:

total y count
y_total <- sum(y)
estimate for p
p_y <- y_total/n_total
95% confidence interval
z <- qnorm(0.975)
u <- (y_total+z^2/2+sqrt(z^4/4+z^2*(y_total-y_total^2/n_total)))

/(n_total+z^2)

l <- (y_total+z^2/2-sqrt(z^4/4+z^2*(y_total-y_total^2/n_total)))
/(n_total+z^2)

This gives us an approximate 95% confidence interval of (0.121, 0.134).

Your turn

Use all of the data, as above, to construct an approximate 95% confidence interval for 𝑝𝐵,
the probability of a smartie to be blue.
Answer quiz question 7.

92

Written assignments

Assignment sheets will appear on Moodle as pdf files. If you would prefer to view an html
version then you can find links to these below. (Each link will only work once the relevant
sheet has been released on Moodle.)

Assignment Hand-out date Due date Solutions

Assignment 1 Tuesday 26 Sep
(Week 1)

Thursday 5 Oct
(Week 2)

Assignment 1

Assignment 2 Tuesday 10 Oct
(Week 3)

Thursday 19 Oct
(Week 4)

Assignment 2

Assignment 3 Tuesday 24 Oct
(Week 5)

Thursday 9 Nov
(Week 6)

Assignment 3

Assignment 4 Tuesday 14 Nov
(Week 7)

Thursday 23 Nov
(Week 8)

Assignment 4

Assignment 5 Tuesday 28 Nov
(Week 9)

Thursday 7 Dec
(Week 10)

Assignment 5

93

https://maths.york.ac.uk/moodle/course/view.php?id=2605
ass1.html
ass1-solutions.html
ass2.html
ass2-solutions.html
ass3.html
ass3-solutions.html
ass4.html
ass4-solutions.html
ass5.html
ass5-solutions.html

	Overview
	Computer labs
	Assessment
	Intro Lab: Meeting R and RStudio
	The data: Dr. Arbuthnot's baptism records
	Some exploration
	A newer data set

	Lab 1: Script files and simulation
	Working with an R script file
	Simulation
	Simulating random samples
	Estimating probabilities from a random sample
	Another probability problem

	Lab 2: Introduction to data
	The Behavioral Risk Factor Surveillance System
	Types of variables
	Summaries and tables

	Interlude: how R thinks about data
	A little more on subsetting

	Creating new variables from old

	Lab 3: Data and distributions
	Numerical summaries of data
	Datasets
	Types of variables
	Central value of a variable
	Amount of variability in a variable
	Empirical quantiles, quartiles, and IQR

	The data
	Data and probability distributions
	The normal distribution
	Skewness
	Using Q-Q plots
	Normal probabilities

	Lab 4: Sampling distributions
	Independent and identically distributed (i.i.d.) samples
	Estimating the expectation
	Sampling distribution of the sample mean
	Interlude: the for loop
	Sample size and the sampling distribution

	Estimating the variance
	Real-estate data
	Taking a sample
	Sampling distribution
	Effect of the size of the sample

	You only have one sample

	Lab 5: Smarties
	Smarties and probability
	Waiting for a blue
	Collecting a full set

	Smarties and statistics
	The data
	Estimating probabilities
	Not all colours are equal
	Sampling distributions
	Correlations
	Confidence intervals

	Written assignments

